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1      Introduction 

The main objective of this project was the development of an innovative computer program with 
advanced capabilities for providing means for establishing reliable quantitative failure initiation crite- 
ria for laminated composites and adhesively bonded joints. The existing software product Stress 
Check, which is based on the p- and hp-version of the finite element method and has a-posteriori error 
estimation capabilities, provided the framework for this development. 

The evaluation of strength was based on recent technological advances which made it possible to 
determine the natural straining modes and their intensities at singular points associated with multi- 
material interfaces by numerical methods. The project was concerned with proof of concept and 
implementation in a fully three-dimensional setting, in conjuction with the hp-version of the finite 
element method. During the Phase II project, a set of failure criteria for composite-laminated bonded 
structures based on stress averaging and material nonlinear analysis were identified as important fail- 
ure prediction methods of interest to the Air Force, Navy and their contractors. Therefore a change in 
the original technical objectives of Phase II was incorporated during the last 6 months of the project. 

The project utilized an existing finite element software product called Stress Check which was devel- 
oped by the small business concern (ESRD) over the past ten years. The research institution (Wash- 
ington University) provided specialized expertise needed for effecting transfer of the new technology 
to professional practice. The new technological capability developed under this project makes it pos- 
sible to improve the design from the point of view of durability. It will also make it possible to prop- 
erly interpret experimental observations concerning failure initiation events in composite materials 
and bonded joints and thereby advance the use of composite materials technology in both civilian and 
military applications. 
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Technical objectives 

2     Technical objectives 

During the Phase II project, the following tasks were completed: 

Task 1: Development, implementation, testing and documentation of an algorithm for the computa- 
tion of eigenpairs that characterize the temperature distribution in the vicinity of singular 
edges in multi-material interface for steady state heat transfer problems. 

Task 2: Development, implementation, testing and documentation of an algorithm for the computa- 
tion of the generalized flux intensity factors (GFIFs) for edge singularities in the case of 
steady state heat transfer problems. 

Task 3: Testing and documentation of the procedures described in tasks 1 and 2. These procedures 
were implemented in the finite element analysis software product Stress Check and a posteri- 
ori error estimation capability in terms of the flux intensity factors is provided. 

Task 4: Development, implementation, testing and documentation of an algorithm for the computa- 
tion of eigenpairs that characterize the strain distribution in the vicinity of singular edges in 
multi-material interface elasto-static problems. 

Task 5: Development, implementation, testing and documentation of an algorithm for the computa- 
tion of the generalized stress intensity factors (GSIFs) for edge singularities when an elastic 
body is subjected to mechanical and thermal loads. 

Task 6: Testing and documentation of the procedures described in tasks 4 and 5. These procedures 
were implemented in the finite element analysis software product Stress Check and a posteri- 
ori error estimation capability in terms of the stress intensity factors is provided. 

Task 7: Development, implementation, testing and documentation of a capability for the computation 
of average stress/strain along element edges, element faces or arbitrary curves for two- and 
three-dimensional elasticity problems. The average is understood in the integral sense over a 
characteristic length/area. 

Task 8: Development, implementation, testing and documentation of an automatic nonlinear solution 
procedure for the evaluation of composite bonded joints. The procedure involves a material 
nonlinear analysis of the joint for the design load followed by the determination of the failure 
load based on several predefined criteria. This automatic procedure is accessible from within 
the handbook framework of Stress Check. 

Task 9: Development, implementation, testing and documentation of a capability to input orthotropic 
material properties for individual plies and for sub-laminate properties for 2D plane-strain 
analyses. The procedure allows entering the 3D material coefficients in the material axes of 
the composite and performs the necessary transformations to compute the equivalent 2D 
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properties in the Stress Check XY work plane. When a set of plies need to be combined in a 
single layer (sub-laminate), the properties of the sub-laminate are determined by homogeni- 
zation of the material properties. 

Task 10: Delivery of one copy of Stress Check software executable on a Windows NT workstation 
and pertinent documentation to the Air Force Rome Laboratory. Rome Laboratory shall have 
the same rights to Stress Check as a "paid-up" licensee. 

The details of these activities are described in the following sections. 

3     Technical background 

There is a growing demand for efficient and reliable means for predicting and eventually prevent- 
ing failure initiation and propagation in multi-chip modules (MCM), electronic packages and com- 
posite materials subjected to mechanical and thermal loads. Thermal, elastic and thermo-elastic 
problems associated with large scale integrated circuits, electronic packaging, and composites 
increase in complexity and importance. These components are assemblages of dissimilar materials 
with different thermal and mechanical properties. The mismatch of the physical properties cause flux 
and stress intensification at the comers of interfaces and can lead to mechanical failures. 

The traditional finite element analysis of stresses is inadequate to handle these types of problems1: 
"Since the stress and displacement fields near a bonding edge show singularity behavior, the adhesive 
strength evaluation method, using maximum stresses calculated by a numerical stress analysis, such 
as the finite element method, is generally not valid". 

These material interfaces, as well as crack tips, are called singular points because the temperature flux 
is infinity in the linear theory of steady-state heat conduction and so are the stresses in the linear the- 
ory of elasticity. Typical singular points where failures initiate and propagate in an electronic device 
are shown in Figure 1. 

New approaches to predicting the initiation and extension of delamination in plastic encapsulated LSI 
(Large Scale Integrated Circuit) devices, for example, are based on the computation of certain func- 
tionals, called the generalized flux/stress intensity factors (GFIFs/GSIFs), the strength of the stress 
singularity, and in thermo-elastic problems the thermal stress intensity factors (TSIFs). Since the 
stress and strain components are generally not bounded, it is not possible to construct failure initiation 
events with them. A key requirement for formulating failure laws is a software-tool which computes 
reliably the GFIFs/GSIFs and the strength of the singularity. The reliability and accuracy of numerical 
results is an essential requirement for proper evaluation and formulation of failure theories through 
experimental observation of failure initiation events. 

1. T. Hattori, S. Sakata and G. Murakami, "A stress singularity parameter approach for evaluating the interfacial reliability of plastic 
encapsulated LSI devices", Jour. Electronic Packaging, 111, (1989), pp. 243-248. 
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FIGURE 1.   Typical sites of failure initiation in an electronic device. 

3.1     Introduction and Notation 

In the neighborhood of singular points the exact solution of two-dimensional elastostatic prob- 
lems for example, can be expanded in the form: 

a. 
{«> = £ Af '{*.(e)} 

i = 1 

(1) 

where {w} is the displacement vector with components ux(x,y), uy(x,y), r and 0 are polar coordinates 
centered on the singular point; ctj are called eigenvalues and <|);(G) are called eigenfunctions.These 
eigenpairs (cq, (]>;) depend on the material properties, the geometry and the boundary conditions [0,(0) 
are smooth vector functions]. The A,- are coefficients which depend on the loading. Because of their 
close analogy to stress intensity factors in linear elastic fracture mechanics, At are called generalized 
stress intensity factors (GSIFs). In the case of heat transfer problems they are called generalized flux 
intensity factors (GFIFs). 

The stresses in the same neighborhood can be computed from the displacements given by Eq. (1) and 
the material properties as: 

{o} =   X 
i= 1 

V 
ex.- 

{Vf(6)} (2) 
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where vj/^e) depend on the eigenfunctions (^(9) in Eq. (1) and the material coefficients. It is clear 
from Eq. (2) that when a,- < 1, the stresses become singular for r=0. For additional details see Ref. 
[2]-[5]. 

Three-dimensional singularities are considerably more difficult to analyze than two-dimensional 
ones, where only one type of singularity exists. In 3D in a neighborhood of the edges and the vertices 
the singular behavior is different. 

Edge Singularities: If a coordinate system (x,y,z) is located at an edge, with the y-axis along the edge, 
then there are three edge GSIFs which are y-dependent: Arfy), Arfy) and Ani(y). These edge GSIFs 
are analytic along the edge, however they become themselves singular when this edge intersects with 
a free plane, at a vertex. In the neighborhood of an edge-vertex type geometry the GSIFs can be repre- 
sented once again by vertex and vertex-edge stress intensity factors. For example, A,(y) = V S . y1'-' + 
smoother terms. • 

Vertex Singularities: In the neighborhood of a vertex, and away from edge-vertex geometry, the dis- 
placement field can be represented by only one vertex intensity factor and the corresponding eigen- 
pairs. Investigating the mathematical behavior of the singularities in 3-D is an active field of research 
in the mathematical community, and the decomposition of the displacement field into singular and 
regular terms is documented in some recent papers. 

3.2 Formulation 

The solution of second order elliptic boundary 
value problems (BVP) in three-dimensions in the 
vicinity of any singular point, can be decomposed 
into three different forms, depending whether the 
singular point is in the neighborhood of an edge, a 
vertex or an intersection of the edge and the ver- 
tex. Mathematical details of the decomposition can 
be found e.g. in Ref. [8]-[ll] and the references 
therein. A representative three-dimensional 
domain denoted by Q, which contains typical 3D 
singular points is shown in Figure 2. Vertex singu- 
larities arise in the neighborhood of the vertices A,-, 
and the edge singularities arise in the neighbor- 
hood of the edges singularities Ay. Close to the 
vertex/edge intersection, vertex-edge singularities 
arise. 

Consider the simplest elliptic BVP, the Laplace 
equation: 

Ar Vertex i 
Ay - Edge between A,- and A} 

FIGURE 2.   Typical 3D singularities. 
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V2M = 0 inQ 

« = 0   on rD c 3Q,   <*1 = o on TN c 3Q 
dn 

(3) 

(4) 

where M^1? X2, X3) denotes the temperature field (in the following xh x2 and x3 will be either Carte- 
sian, cylindrical or spherical coordinates), and rDuTN = dQ. It shall be assumed that curved edges 
that intersect at vertices do not exist, at that crack faces, if any, lie in a plane. 

Edge Singularities: We first examine the edges denoted by A,y which connect the vertices A,- and Ay 
Moving away from the vertex a distance 8/2, and creating a cylindrical subdomain of radius r = R 
with the edge Ay- as its axis, we define a subdomain in the vicinity of the edge denoted bye8?Ä(Aiy). 
Figure 3 shows the edge singularity subdomain eM(A,2). We restrict our attention to domains having 
straight edges. 

FIGURE 3.   The edge neighborhood es e(A12). 

The solution in £5 R can be decomposed as follows: 

K    s 
a*..     v5. 

u(r,6,z)= £5/*s(z) r'(lnr)/ts(e)   +   v(r,Q,z) (5) 

*= u = o 
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where S > 0 is an integer which is zero unless ak is an integer, ak+l > a^ are called edge eigenvalues; 
a^iz) are called the edge flux intensity functions (EFIFs), are analytic in z but can become very large 
as they approach one of the vertices; andfks(Q), called eigenfunctions, are analytic in 9. The function 
v(r,Q,z) belongs to Hq(e), the Sobolev space, where q can be as large as required and depends on K. 
We shall assume that c^ for k < K is not an integer, therefore Eq. (5) becomes: 

n(r,e,z) = £o*(z) r*/*(e)   +   v(r,e,z) (6) 

* = i 

Vertex Singularities: A sphere of 
radius p = 8, centered in the vertex A j 
for example, is constructed and inter- 
sected by the domain Q. Then, a cone 
having an opening angle <|> = a is con- 
structed along every edge intersecting 
at Aj, and removed from the previ- 
ously constructed subdomain, as 
shown in Figure 4. 

The resulting vertex subdomain is 
denoted by V§(A\), and the solution u 
can be decomposed in V§(A\) using a 
spherical coordinate system by: FIGURE 4.   The vertex neighborhood V^A^. 

L     Q 

;= i? = o 
M(p,<t>,e) = ]£Jr*i, pT,(inp)\(4»,e) + v(p,4>,e) (7) 

where Q > 0 is an integer which is zero unless y; is an integer, y[+l > y/ are called vertex eigenvalues, 
and hig(§,Q), called the eigenfunctions, are analytic in $ and 9. The biq are called vertex flux intensity 
factors (VFIFs). The function v(r,Q,z) belongs to WiV), where q depends on L. We shall assume that yt 

for / < L is not an integer, therefore, Eq. (7) becomes: 

u(p,<t>,e) = £*>, pY' h,w,Q) + v(p,<t),e) (8) 
/=i 
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Vertex-Edge Singularities: The most compli- 
cated decomposition of the solution arises in case 
of vertex-edge intersections. For example, let us 
consider the neighborhood where the edge A12 

approaches the vertex Ax. A spherical coordinate 
system is located in the vertex A\, and a cone hav- 
ing an opening angle <|> = a with its vertex coincid- 
ing with Ai is constructed with A12 being its 
center axis. This cone is terminated by a ball- 
shaped basis having a radius p = 8, as shown in 
Figure 5. 

The resulting vertex-edge subdomain is denoted 
by Ve^ziAi, A12), and the solution u can be 
decomposed in V£5>e(Ai, A12): 

FIGURE 5.   The vertex-edge neighborhood 

K      S 

«(P.M) = XE 
k=\s = 0 

L I L     2 
^aksl py' + mks(p) (sin<t))a'Iln(sin<I>)]sgJtj(e) + ^^c/y'(lnp)%((|),e) + v(p,<l),e)   (9) 

V=i 

where mks(p) is analytic in p; gks(Q) is analytic in 6, and hlq(ty,Q) is analytic in (j) and G. The function 
v(r,Q,z) belongs to flPfVe) where q can be as large as required depending on L and K. Again we shall 
assume that V/ for / < L is not an integer, and ak for k < K is not an integer, therefore, Eq. (9) becomes: 

«(P4,6) = JT y«H pY' + m*(p) (sinO)a'gt(0)+^c; pY' A,(4»,9) + v(p,4>, 9) (10) 

1 = 1 

The eigenvalues and the eigenfunctions are associated pairs (eigenpairs) which depend on the mate- 
rial properties, the geometry, and the boundary conditions in the vicinity of the singular point/edge 
only. Similarly, the solution for problems in linear elasticity, in the neighborhood of singular points/ 
edges is analogous to Eq. (5)-Eq. (10), the differences are that the equations are in vector form and the 
eigenpairs may be complex. For general singular points the exact solution uEX is generally not known 
explicitly, i.e., neither the exact eigenpairs nor the exact EFIFs, VFIFs are known, therefore numerical 
approximations must be found. 
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4     Implementation and results 

4.1    Task 1: Eigenpairs for edge singularities in heat transfer problems 

Separation of variables was utilized for the Laplace equation in the neighborhood of the edge sin- 
gularity as shown in Eq. (6). Each eigenpair r^f^Q) is independent of z and satisfies the Laplace 
equation over the plane (r,0) which is perpendicular to the edge. This is exactly a two-dimensional 
problem and therefore the computation of eigenpairs was performed using the modified Steklov 
method described in Ref. [3] and summarized below. 

The algorithm developed for two-dimensional heat-transfer problems was extended to three-dimen- 
sion by considering a slice contained in the plane normal to the edge singularity. The region denoted 
by Q*R in Figure 6, represents a cross section along the edge singularity. The edge is assumed to be 

Material 2 

Material 3 

y 
Material 1 

Singular Edge 

FIGURE 6.   Cross section of an edge singularity for the modified Steklov formulation. 

along the local z axis, and (r, 6) are the coordinates of a cylindrical system located at the intersection 
of the normal plane and the singular edge. The area around the singularity is internally divided into 
sub-domains. 

This '2D-internal mesh' is arranged in a circular ring around the singularity in such a way that the ele- 
ment boundaries coincide with the material interfaces as shown in Figure 7. 
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The number of elements of the internal mesh 
is controlled by the number of material inter- 
faces around the singularity. The largest solid 
angle for a single element is limited to 120°. 
Therefore, if the partition of a single material 
is larger than 120°, the element is divided in 
two or more partitions. For each element of 
the 'internal mesh' the corresponding stiff- 
ness and trace matrices are computed, and 
after assembly, the following eigenvalue 
problem is obtained: 

Material 2 Material 1 

Elem. 2 

Material 3 

[Ks]{uR} = a[M]{uR} (11) 

FIGURE 7.   Typical internal mesh' around the singularity. 

Elem. 3 
Singularity 

where [Ks] is the condensed stiffness matrix, 
[A/] is the trace matrix computed by integra- 
tion on the circular boundary segments on 
Q*R, and {uR} is the vector of coefficients 
that correspond to the degrees of freedom associated with the circular boundaries of the 'internal 
mesh'. The solution of the eigen-problem given by the above equation yields approximation for the 
eigenvalues a,- and the corresponding eigenvectors. The steps and fundamentals for obtaining the sys- 
tem described by Eq. (11) are described in the following. 

By formulating the weak form over Q*R, the singularity is excluded from the domain of interest such 
that the accuracy of the finite element solution does not deteriorate in its vicinity. On the boundaries 
T] and T2 consider either zero temperature or zero flux boundary conditions: 

u = 0 or 3« 
a« 

= 0 on T,, i = 1, 2. (12) 

In Q*R, the temperature field u can be represented as follows: 

u = rf(B) (13) 

Differentiating Eq. (13), and considering the boundary T3 we can write: 

^ = (a/R)u 
or 

(14) 

and a similar condition on T^ 

Multiplying the Laplace equation by a test function v in Hl(Q*R), integrating over the domain Q*R 

and using Green's theorem, the modified Steklov weak form is obtained: 
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Seek ae5R, 0*Ke//"(QA) 

B(u,v)-(NR(u,v) + NR.(u,v)) = a(MR(u,v) + MR.(u,v)), V ve   H\ciR) 

where 

a 
dx 

[Q] = 
cos 8 

[D(6)] = 
(-sine)^ 

rf sin 9 
03 

h COS 6^ ae 

(15) 

(16) 

(17) 

(18) 

(19) 

B(u,v) = J jaD]v)T[E)([D]u)dQ, 

MR{u,v) = j[v[Q]T[E][Q]u]r = R dB, 
e 

NR(u,v) = J[v[ß]r[£]([D(e)]M)]r = R ^6, 
e 

and [D], [D(% [Q] and [R] are given as follows: 

[D] = 

[E] is the 2D material matrix reduced from the 3D material matrix. 

Remark 1. The domain fl*R does not include singular edge, hence no special refinement of the finite 
element mesh is required. 

Remark 2. The formulation of the weak form was not based on the assumption that the material is 
isotropic, and in fact can be applied to multi-material anisotropic interface. 

The domain Q*R is divided into finite elements through a meshing process, as described before. The 
polynomial basis and trial functions, {*Fj}, are defined on a standard element in the £, T| space such 
that -1<4<1,-1 <T]<1. The temperature field is then expanded in terms of the known polynomial 
shape functions multiplied by a set of unknown coefficients {«tot}: 

u = K,jm (20) 

The entries of the unconstrained stiffness matrix corresponding to B(u, v) are given by (see Ref. [3]): 

K,j = JJ([Z>]{¥,.})r[£][D]{y,.}<Ä2 (21) 
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Similar expressions are obtained for the matrices [NR], [NR*\ and [MR], [MR*\ associated with the 
bilinear forms NR(u,v) and MR(u,v). 

Denoting the set of all unknown coefficients by {utot}, and the set of coefficients associated with T$ 
and r4 by {uR}, the following eigen-problem is obtained: 

([*] - [NR] - [NR.]){utot} = a([MR] + [MR.]){uR] = a[M]{uR} (22) 

The vector which represents the total number of nodal values in Q*R can be divided into two vectors 
such that one contains the coefficients {uR}, the other contains the remaining coefficients: {utot} = 
{ {

U
R)

T
> {uin)T}- By eliminating {«,„}, the reduced eigen-problem is obtained: 

[Ks]{uR} = a[M]{uR} (23) 

The solution of the eigen-problem given by Eq. (23) yields approximations for eigenpairs with high 
accuracy, efficiency and robustness. 

The procedure implemented in Stress Check for the computation of the eigenpairs requires the user 
only to click with the mouse cursor along the singular edge. The program then determines a cutting 
plane normal to the singular edge at the pick point and creates the partitions indicated in Figure 7 
based on the material properties of the elements intersecting the cutting plane. Once these partitions 
are identified, the elemental matrices are computed and the system of equations is assembled and 
solved. 

4.2    Task 2: Generalized flux intensity factors for edge singularities in heat transfer problems 

The algorithm for the computation of the GFIFs is based on L2 projection of the finite element solu- 
tion into the space of functions characterized by the asymptotic expansion in terms of the eigenpairs. 
The algorithm can be summarized as follows: 

Consider the domain around a singular edge for a heat transfer problem shown in Figure 8. The tem- 
perature field can be expanded around the singular edge in terms of the eigenpairs and the generalized 
flux intensity factors: 

N 

«(r,e) = £AA<e) = L*JM} (24) 
1 = 1 

where A; are the GFIFs, a,- are the eigenvalues and/;<6) are the corresponding eigenfunctions, with 
«^"fee). 
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Let up£^r,Q) be the finite element solution of the tem- 
perature distribution around the singular edge. Then 
the L projection of upp into the domain Q# is charac- 
terized by the following: 

(u-uFE)vdA = 0, for all ve S (25) 

where S is the space of eigenfunctions, and v(r,9) is a 
test function given by: 

v(r,6) = ]T5,.ray;.(e)= |BJ{4>} (26) 

<■ = 1 

FIGURE 8.   Typical cross-section of an edge       Substituting Eq. (24) and Eq. (26) into Eq. (25) and 
singularity through point P. .    6    \ v    ' M v    ' M v    / 

rearranging we have: 

LfijJ{4»}L4>J<"{A} = lB]jWuFEdA (27) 

Q« 

Eliminating 5, from Eq. (27) and noting that dA=rdrdQ, the following system is obtained: 

R2 e2 ä2 e2 

JJ{4>}L4>J«WÖ{A} = JJ{*}«F£rdrd8 (28) 

From the definition of {((>} in Eq. (24) and integrating in the radial direction, the system of equation 
reduces to: 

KijAj = Rj 

(0, + Oj + 2)^    (Oi + 0,+ 2) e2 

~i     "V 

j(a, + a; + 2)     D(a, + a; + 2) 82 

6, 

Rj= jjrai+\6)uFEdrd6 

(29) 
Ä, 82 

Ä.6, 

Solving the system of equations represented by Eq. (29) over the domain Q.R gives the values of A,- 
(the GFIFs). The L2 projection provides excellent approximation when the generalized intensity fac- 
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tor along the singular edge is either constant or linear, but the approximation deteriorates for cases in 
which the variation is of higher order. Nevertheless the current implementation provides a very robust 
algorithm for a large class of practical problems. 

The procedure implemented in Stress Check for the computation of the generalized flux intensity fac- 
tors requires the user to first solve the heat transfer problem given the topology, material properties 
and boundary conditions. After the finite element solution is available, the post-processing operation 
requires only to click with the mouse cursor along the singular edge. The program then determines a 
cutting plane normal to the singular edge at the pick point and computes the eigenvalues and corre- 
sponding eigenvectors as explained in the previous section. With the eigenpairs and the temperature 
distribution obtained from the finite element solution the program constructs the system given by Eq. 
(29), the solution of which provides the GFIFs as shown in the next section. 

4.3    Task 3: Model problems - Eigenpairs and generalized flux intensity factors 

The procedures described in the previous sections for the computation of the eigenpairs and the 
corresponding generalized flux intensity factors for edge singularities in steady state heat transfer 
(scalar) problems, are illustrated in the following. 

Scalar problem 1: Clamped-free crack in isotropic material. Circular domain of unit radius with a 
crack along the positive x-axis. One face of the crack (T]) has zero temperature boundary condition 
and the other face (T2) is flux free. The outside boundary (TR) has an imposed flux (Figure 9). The 
finite element mesh consisting on 16 solid elements is also shown in Figure 9. 

FIGURE 9.   Isotropic clamped-free crack. Notation 
and mesh. 
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The elements are graded towards the singular edge in geometric projection with a common factor of 
0.15. 

The exact solution for this problem is given by (Ref. [1]): 

u(r,Q) = -1.35812r1/4sin(e/4) + 0.970087 r3/4 sin (36/4) + ... (30) 

The exact values of the first two eigenvalues for this problem are: aj=l/4 and a2=3/4, and the corre- 
sponding generalized flux intensity factors are: Aj=1.358097, A2=0.970087. 

The finite element solution was obtained for polynomial orders ranging from 1 to 8. The estimated 
relative error in energy norm for the sequence of finite element solutions is shown in Figure 10. 

(1)   Solution = SOL,   runs #1 to #8 

Run # DOF Total Potential Energy Convergence Rate % Error 

1 32 -2.032896794902e+000 0.00 31.85 
2 112 -2.228519967775e+000 0.76 12.24 
3 200 -2.248067253504e+000 0.74 7.96 
4 352 -2.252250724991e+000 0.31 6.70 
5 572 -2.254400378353e+000 0.25 5.95 
6 876 -2.255778943319e+000 0.22 5.41 
7 1280 -2.256771999437e+000 0.21 4.99 
8 1800 -2.257536919443e+000 0.21 4.64 

Estimated Limit -2 .262400478095123e+000 

FIGURE 10. Estimated relative error in energy norm for scalar problem 1. 

The first and second eigenvalues computed in Stress Check and the corresponding values of the 
GFIFs are shown in Figure 11. The tabular data shows the convergence of the Ai and A2 as a function 
of the number of degrees of freedom (DOF) corresponding to eight finite element solutions obtained 
for polynomial orders ranging from 1 to 8.As can be seen, the numerically computed eigenvalues are 
practically identical to the theoretical values. The generalized flux intensity factor are also very close 
to the theoretical values. The estimated limits shown in the table are computed by a projection to infi- 
nite number of degrees of freedom of the three values with the highest DOF. The value in brackets 
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represents the percent deviation between the estimated limit and the value corresponding to run #8. 

Number of E-pairs: 2, Solid angle: 3.600000e+002 
Global coord, of point along edge: X=0.0, Y=0.0, 2=0.0 
No. 1, Eval = 2.500000e-001 
No. 2, Eval = 7.500000e-001 

GFIFs 
Isotropie clamped-free crack 

(0)   Solution = SOL,  runs 1 to 8   (nodes=16-16,angle=360.0), 
Generalized Flux Intensity Factors,  Int. Radius =0.5 

Run DOF Radius Al A2 

1 32 5.00000e-001 -1.12165e+000 8.40991e-001 
2 112 5.00000e-001 -1.28522e+000 9.60927e-001 
3 200 5.00000e-001 -1.32626e+000 9.70949e-001 
4 352 5.00000e-001 -1.33414e+000 9.70400e-001 
5 572 5.00000e-001 -1.33718e+000 9.70066e-001 
6 876 5.00000e-001 -1.34012e+000 9.70035e-001 
7 1280 5.00000e-001 -1.34257e+000 9.700Ble-001 
8 1800 5.00000e-001 -1.34437e+000 9.70092e-001 

Est.Limit Al =-1.353007e+000 ( 0. 64%) 
Est.Limit A2 =9.700747e-001 ( 0.00%) 

FIGURE 11. Eigenvalues and Generalized Flux Intensity Factors for scalar problem 1. 

Finally, Figure 12 shows the numerically computed eigenfunctions associated with the first and sec- 
ond eigenvalues. 

E-function associated with E-v/alue: 2.500000e-001 E-function associated with E^alue: 7.500000e-001 

1.0T je*" 

0.5' 

0.0* : 

-0.5 

-1.0+ 

-1.5 

e 
f 

tr 
i       i       i       i       i       i       i       i 

100 200 

Theta 

300 400 

FIGURE 12. Eigenfunctions associated with the first and second eigenvalues for scalar problem 1. 
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Scalar problem 2: Anisotropie reentrant corner. This is a heat transfer problem in an anisotropic 
material whose boundary consists of a 90° reentrant corner generated by two flux-free faces Ti and 
r2, which meet along an edge as shown in Figure 13. The cylindrical boundary of the domain (TR) is 
loaded by flux boundary condition which corresponds to the first symmetric eigenfunction of the 
asymptotic expansion of u(x,y,z) about the reentrant edge as given in Ref. [6]. The finite element mesh 
created in Stress Check consisting of three solid elements is also shown in the figure. 

Material properties: 
kxx=4.0 
kyy=kzz= 1.0 

Boundary Conditions: 
«(0,0,0) = 0.0 

du/dQ = 0onTl,r2 

FIGURE 13. Anisotropic reentrant corner. Notation and 
mesh. 

The exact values of the first and second eigenvalues and the corresponding GFIFs are 0C]=2/3, Ai=1.0 
and a2=4/3, A2=0.0, respectively. The finite element solution was obtained for polynomial orders 
ranging from 1 to 8. The estimated relative error in energy norm for the sequence of solutions is 
shown in Figure 14. The estimated error is around 3% for the solution with 433 degrees of freedom 
(DOF). 

Error Estimate 
Anisotropic reentrant corner 

(0)   Solution - SOL,   runs  #1 to #8 

Run # DOF Total Potential Energy Convergence Rate % Error 

1 9 -8.823 6S9296528e-001 0.00 29.06 
2 28 -9.425922961277e-001 0.59 14.81 
3 53 -9.540787151703e-001 0.61 10.01 
4 91 -9.584817509602e-001 0.56 7.38 
5 145 -9.605587799983e-001 0.54 5.74 
6 218 -9.616691556281e-001 0.53 4.63 
7 313 -9.623188417919e-001 0.52 3.83 
8 433 -9.627258673192e-001 0.52 3.24 

Estimated Limit -9.637358320546628e-001 

FIGURE 14. Estimated realtive error in energy norm for scalar problem 2. 
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The first and second eigenvalues computed in Stress Check and the corresponding eigenvectors are 
shown in Figure 15, while the values of the GFIFs are shown in Figure 16. The tabular data shows the 

E-function associated with E-value: 6.6B6667e-001 

1.0 

0.5x £sa 
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0.0 

-0.5 

-1.0 

-1.5 

E-function associated with E-value: 1.333333e+000 

1.0T 
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T«V 

m, 
W( •e 
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'  0.0 
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FIGURE 15. Eigenfunctions associated with the first and second eigenvalues for scalar problem 2. 

convergence of the Aj and A2 as a function of the number of degrees of freedom (DOF) correspond- 
ing to eight finite element solutions obtained for polynomial orders ranging from 1 to 8. As can be 

Umber  of E-pairs:   2,  Solid angle:   2.700000e+002 
Global coord,   of point  along edge:   X-O.O,  ¥-0.0,  Z—0.147912 
Ho.   1,  Eval -  6.666667e-001 
Ho.   2,  Eval -  1.333333B+000 

Fracture Extraction 
Anisotropie reentrant corner 

(0)   Solution - SOL,  rune 1 to 8  <nodes«l-l,angle-270.0>, 
Generalized Flax Intensity Factor«,  Int.  Radius - 0.9 

Run DOF Radius Al A2 

1 9 9.000e-001 -8.890e-001 -S.038e-002 

2 28 9.000e-001 -9.879e-001 -2.443e-003 

3 S3 9.000e-001 -9.837e-001 -4.930e-004 

4 91 9.000e-001 -9.931e-001 8.355e-004 

5 145 9.000e-001 -9.962e-001 2.111e-004 

6 218 9.000e-001 -9.970e-001 4.884e-005 

7 313 9.000e-001 -9.987e-001 2.482e-004 

8 433 9.000e-001 -9.984e-001 7.792e-006 

Set.Limit Al—9.979279e-001 
Est.Limit A2-1.103098e-004 

FIGURE 16. Eigenvalues and Generalized Flux Intensity Factors for scalar problem 2. 
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seen, the numerically computed eigenvalues are practically identical to the theoretical values. The 
generalized flux intensity factor are also very close to the theoretical values. 

Scalar problem 3: Two material interface. Two materials perfectly bonded along a common edge 
satisfying the following equation: 

£,V u = 0 in Q, (31) 

with the following flux conditions along the external boundary (Figure 17): 

|^ = *,[a1r
a'"1/z1(e) + a2r

a2_1/i2(e)] on I> 3Q,. / = 1,2 (32) 

The material coefficients are: ^=10, k2=l; the eigenvalues are: oc,=0.731691779, a2= 1.268308221, 
and: 

h(Q) = i     «»[(l-e)e] + c,sin[(l-fl)e]-»0» T, 
1 c,cos[(l-a)G] + c2c3sin[(l-a)9]-»on T2 

....       f     cos[(l + a)0]-c,sin[(l +a)Q]-+ on T, 
M6) = ] ' (34) 

[ c,cos[(l +a)0]-c2c3sin[(l +a)G]-» on T2 

where c1=6.31818181818182, c2=-2.68181818181818, c3=0.64757612580273, and 
a=0.26830822130025. The exact solution for this problem is (Ref. [7]): 

u(r,Q) = A,rB'A,(e)+il2r
a,A2(e) (35) 

where Aj =A2= 1. 

A sequence of finite element solutions was obtained for the mesh shown in Figure 17 consisting of 6 
solid elements graded in geometric progression towards the singular edge with a common factor of 
0.15. The estimated relative error in energy norm for this problem is shown in Figure 18. As can be 
seen from the results, the global error of the solution is well under 1% for p=8 (716 DOF). 
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y i 
Material properties: 

On Qj: kxx =kyy=kzz=10.i 

On Q-2-' kxx =kyy=kzz=l-0 

Boundary Conditions: 

du/dr =f(r,Q) on Th T2 

FIGURE 17. Two material interface. Notation and mesh. 

Error Estimate 
Two material Interface 

(0) Solution = SOL, runs #1 to #8 

Run # DOF Total Potential Energy Convergence Rate % Error 

1 13 
2 44 
3 81 
4 142 
5 230 
6 351 
7 511 
8 716 

-5.135011591076e+001 
-1.110656827166e+002 
-1.115029819039e+002 
-1.122893439218e+002 
-1.123012918676e+002 
-1.123044837205e+002 
-1.123054822500e+002 
-1.123060704408e+002 

0.00 73.67 
1.60 10.51 
0.36 8.46 
3.39 1.26 
1.14 0.73 
0.90 0.50 
0.59 0.40 
0.59 0.33 

Estimated Limit -1.123072750529331e+002 

FIGURE 18. Estimated relative error in energy norm for scalar problem 3. 
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The first and second eigenpairs are shown in Figure 19. Note that the maximum of these functions are 
located at 225 degrees for the first eigenfunction and at 154 degrees for the second eigenfunction. In 

E-function associated with E-value: 7.316918e-001 
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FIGURE 19. Eigenf unctions associated with 
the first and second eigenvalues 
for scalar problem 3 
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both cases the maximum is unity. For the exact eigenvectors given in Eq. (33) for the first eigenvalue 
and in Eq. (34) for the second eigenvalue, the maximum occur at the same angular positions (225 and 
154 degrees respectively) but their magnitude is different (6.5525 for A,j and 7^). 

The first and second eigenvalues and the corresponding flux intensity factors computed numerically 
are shown in Figure 20. As before, the approximation of the eigenvalues is very good, and the values 
of A j and A2 are also close when considering the difference in the amplitude of the eigenvectors men- 
tioned above. Referring to Eq. (35), it is apparent that the approximate and exact solutions give the 
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same temperature field in the neighborhood of the singular edge. That is because the product of the 
GSIFs and the eigenvectors is the same. 

Number of E-pairs:  2,   Solid angle:  3.600000e+002 
Global cooed,  of point along edge:  X=0.0,   Y=0.0,  Z=-5.04279e-002 
No.  1,  Eval = 7.316918e-001 
No.  2,   Eval = 1.268308e+000 

Fracture Extraction 
Two material Interface 

(0)   Solution = SOL,   runs 1 to 8   (nodes=17-17,angle=360.0), 
Generalized Flux Intensity Factors,  Int. Radius =0.5 

Run DOF Radius Al A2 

1 13 5.000e-001 5.379e+000 8.777e-001 
2 44 5.000e-001 6.408e+000 6.875e+000 
3 81 5.000e-001 6.536e+000 6.883e+000 
4 142 5.000e-001 6.545e+000 6.586e+000 
5 230 5.000e-001 6.544e+000 6.549e+000 
6 351 5.000e-001 6.546e+000 6.551e+000 
7 511 5.000e-001 6.547e+000 6.552e+000 
8 716 5.000e-001 6.548e+000 6.552e+000 

Est.Limit Al =6.549912e+000 ( 0. 03%) 
Est.Limit A2 =6.552459e+000 ( 0. 00%) 

FIGURE 20. Eigenvalues and Generalized Flux Intensity Factors for scalar problem 3. 
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Finally, Figure 21 shows the convergence graph of A! and A2 as a function of the number of degrees 

Two material Interface 
(0) Solution - SOL runs 1 to 8 (nodes»17-17.angle-360.0), 

Generalized Flux Intensiv Factors. Int Radius ■ 0.5 

-u u- 

Legend 

—•—   A1 
 A2 

i     i     i     i     i     i     i     i    i     i     i     i     i     i     i 

100       200      300       400      500      600       700      800 

DOF 

FIGURE 21. Convergence of A1 and A2 for scalar problem 3. 

of freedom (DOF). It is apparent from the results, that the generalized flux intensity factors are practi- 
cally independent of the discretization. 

Scalar problem 4: Isotropie reentrant corner. To illustrate the quality of approximation when the 
generalized flux intensity factor varies along the singular edge, consider the reentrant corner shown in 
Figure 22. 

Material properties: 
kxx=kyy=kzz=l.O 

(0 = 270° 
L = 2.0 
a = 2.0 

FIGURE 22. Isotropie reentrant corner. Notation and mesh. 
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This is a heat transfer problem of an isotropic material whose boundary consists of a 90° reentrant 
corner generated by two flux-free faces T] and T2, which meet along an edge. The cylindrical bound- 
ary of the domain (TR) and the front (z=L) and back (z=0) faces have Diritchlet boundary conditions, 
that is the temperature distribution u(r,Qj.) is imposed using the expansion: 

u(r,Q,z) = Ax(z)r 'cos(a,G)+A2(z)r 2cos(oc20) 

A,(z) = au+auz, A2(z) = a2l+a22z 

where a,=z'7r/a) are the exact eigenvalues and the variation of the GFIFs A\ and A2 along the singular 
edge is linear. Selecting a^ = a2\ = 1.0 and a12 = a22 = 0.5, the exact values of the GFIFs along the 
singular edge are: 

A, (2)= A2(z)= AEX = 1.0 + 0.5* 

A sequence of finite element solutions was obtained for the mesh shown in Figure 22 consisting of 9 
solid elements graded in geometric progression towards the singular edge with a common factor of 
0.15. The estimated relative error in energy norm is shown in Figure 23. With this mesh, the error at 

Error Estimate 
Isotropic reentrant corner 

(0) Solution - SOL, runs #1 to #8 

Run U DOF Total Potential Energy Convergence Rate % Error 

2 9 1.102985683990e+001 0.00 11.12 

3 18 1.107409S22030e+O01 0.28 9.16 

4 45 1.108501491406e+001 0.07 8.61 

5 93 1.110944485218e+001 0.24 7.23 

6 171 1.115382367217e+001 1.17 3.54 

7 288 1.116486612363e+001 1.49 1.63 

8 453 1.116705996903e+001 1.49 0.83 

Estimated Limit    1.116782792307470e+001 

FIGURE 23. Estimated realtive error in energy norm for scalar problem 4. 

p=8 (453 DOF) is less than 1%. The corresponding GFIF values obtained using the L2 projection 
algorithm implemented in Stress Check are shown in Table 1 at various positions along the singular 
edge. As can be seen, the numerical results are practically identical to the exact values. 
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TABLE 1. Numerical and exact values of GFIFs along singular edge 

z At(z) A2(Z) AEX 

0.053 1.026 1.026 1.0265 

0.664 1.332 1.332 1.3320 

1.333 1.667 1.667 1.6665 

1.967 1.983 1.983 1.9835 

4.4    Task 4: Eigenpairs for edge singularities in elasticity problems 

The elastostatic displacement field in three-dimensions in the vicinity of an edge singularity can 
be decomposed in terms of the eigenpairs and the corresponding stress intensity functions. Mathemat- 
ical details on the decomposition are found in Ref. [8], [10] and the references therein. Elastic edge 
singularities associated with anisotropic materials and multi-material interfaces have been less inves- 
tigated, however. Analytical methods as in Ref. [12], [13] provide procedures for the computation of 
eigenpairs, but require very involved mathematical operations. 

In the following, a description of the numerical procedure implemented in Stress Check for the com- 
putation of eigenpairs for edge singularities in elasticity is addressed. In the neighborhood of a typical 
edge singularity the displacement fields can be written as: 

K    s 

S(r,e,z) = ££flfa(z) rat(\nr)%(e)   +   w(r,B,z) (36) 
*= ls = 0 

where S > 0 is an integer which is zero for most practical problems, and aks(z) are analytic in z and are 
called the generalized stress intensity functions. The vector function w(r,Q,z) belongs to [W^ R)] , 
where q depends on K. Considering the case S = 0, Eq. (36) becomes: 

S(r,e,z) = £«»*(«) r** MB)   +   w(r,B,z) (37) 

The tractions on the boundaries are denoted by T = (Tx Ty TZ)
T, and the Cartesian stress tensor by 

o = ax ay az ixy iyz xzx. Body forces are not considered in the vicinity of the singular edge. 
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^12 

R 

For computing the eigenpairs, a two-dimensional 
sub-domain QR is constructed in a plane perpen- 
dicular to the edge bounded by r=R and r=R* as 
shown in Figure 24. On the boundary 0=0 and 
6=0)i2 of the sub-domain Qß homogenous trac- 
tions, homogeneous displacement constraints or a 
combinations of these are prescribed. 

In view of Eq. (37) the displacement vector in Q/j 
has the following functional representation: 

u = a(z)r 
/,(6) 
fy(Q) = a(z)rKffl (38) 

and the in-plane variation of the displacements is 
written as: 

FIGURE 24. The modified Steklov domain Q^. S(r,9) = -^- (39) 

Following the steps presented in detail in Ref. 
[14], an eigenvalue problem is cast in a weak form over a two dimensional domain involving all three 
displacement components: 

SeekaeC, 0*we [H\Q„)\.    suchthat,    Vve [//'(Q^)]3 

with 

B(u,v)-[NK(u,v)-NK.(u.v)) = \[MR(u,v)-MR,(u,v)] 

T 

B(u,v) = f j nk[Ar]dr+[Ae]^y] [E]k[Ar]dr+[A0)^u\rdrd6 

(0|: 

NR(t,t)=[    Cv)TlAr)T[E][Ae]d6u\      dB 

(0|; 

MR(u,v) =  f    (v)T[Af[E][Ar]t\      dQ 

(40) 

(41) 
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where [E] is a 6x6 material matrix with up to 21 independent coefficient for a completely anisotropic 
material; 3^ d/dr, 3Q= 3/90; and 

[Ar] = 

cos 9 0       0 
0 sinG    0 

0 0       0 

sin 6 cose    0 
0 0    sine 
0 o   cose 

[A6] = 

-sine     0        0 
o    cose   o 
0        0        0 

cos6 -sin6     0 
o     o    cose 
0        0    -sine 

(42) 

Remark 1. The test and trial functions have three components, but the domain over which the weak 
eigen-formulation is defined is two-dimensional and excludes any singularity. Therefore the applica- 
tion of the p-version of the finite element method (FEM) for solving Eq. (41) is very efficient. 

Remark 2. The bilinear forms NR and NR* are non-symmetric with respect to « and v thus they are 
not self-adjoint. As a consequence the 'minimum principle' does not hold, and any approximation of 
the eigenvalues obtained using a finite dimension subspace of [Hl(QR)] cannot be considered as an 
upper bound of the exact ones, and the monotonic behavior of the error is lost as well. Convergence is 
assured under a general proof provided in Ref. [16], however. 

Next consider the discretization of the weak 
formulation given by Eq. (40) using the p- 
version FEM over a finite dimensional sub- 
space of [A/'(QÄ)] . Assuming that the 
domain QR consist of three different materi- 
als as shown in Figure 25, let us divide it 
into three finite elements as shown. Let us 
consider a typical element bounded by Q\ 
and 62 (element 1 in Figure 25). A standard 
element is considered in the £, r\ plane such 
that -1< £ <1, -1 < T| <1 over which the poly- 
nomial basis and trial functions are defined. 
These standard elements are mapped into the 
real elements by proper mapping functions 
(for details, see Ref. [15] chapters 5 and 6). 
The functions u and v are expressed in 
terms of the basis functions ^-(^/n) in the 
standard plane: 

FIGURE 25. Discretization of the domain QR. 

u = 
Vi ■ 

0  . ..   0  Vl . 

..00. 

.. yN 0  . 

..   0 

..   0 

c\ 
= WUC} 

0  . ..00. • •   0  Vi • •• Vw _C3/V 

(43) 
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where C; are the amplitudes of the basis functions and \|/t- are the products of the integral of the Leg- 
endre polynomials in £ and T|. Since u and v lie in the same space, we define similarly v = m{B}. 

The unconstrained stiffness matrix corresponding to the bilinear form B in Eq. (41) is given by: 

[K] = f f2l{[Ar]dr+[Ae]d-fjm\ [E]k[Ar]dr+[A$yV]\rdrdB 

Next we define the matrices: 

[dP] = 

r 

-p !sin0 ... 

0 

0 

Py cosG ... 

0 

0 

-PjvSinG      0 0 0 

0       P^osG ... PNcos6 0 

0 0       ...       0 0 

P^cosG -P,sin6 ... -P^sinG 0 

0 0 

0 0 

0 

0 

0 

0 

0       P,cos6 ... PNcosQ 

0       -P^sinG ... -P^sinG 

(44) 

[P] = 

P,cosG 

0 

0 
PtSinG 

0 

0 

PNcosQ 0 

0      P,sinG .. 

0 0      .. 
P^sinG P,cosG .. 

P^sinG 

P^cosG 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

P,sinG . .. PjySinG 

P,cosG . ..   PjyCOSG 

where P,(£) for Z>3 are the integrals of the Legendre polynomials, and P1(^)=(l-^)/2, P2(£)=(l+£)/2. 
Therefore, the bilinear form N can be written as: 

N, K«.v) = [Bf J   [Pf[E][dP]  \n=_MC] = [B]T[NR][C] (45) 

The entries in [NR] are computed using Gauss quadrature. Similarly, the expression for the bilinear 
form M is evaluated as follows: 

MR(u, v) = [B]' 
G2-0lf

1   - T. J   [Pf[E][P]  \n=_^ [C] = [B]'[MR][C] (46) 

The matrices [NR*] and [MR*\ have the same values as those of [NR] and [MR], but of opposite sign. 
This is because the shape functions on boundaries T3 and T4 are the same (except for a sign change), 
and so is the mapping to the standard element. Denoting the set of amplitudes of the basis functions 
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associated with the boundary T3 by [CR], and those associated with the boundary T4 by [CR*], the 
eigenpairs can be obtained by solving the following generalized eigenvalue problem: 

[K][C]-[NR][CK] + [NR.][CR.] = X([MK\ICK\-[MR.][CK.]) (47) 

Augmenting the coefficients of the basis functions associated with r3 with those associated with T4 

and denoting them by the vector [CRR*], Eq. (47) becomes: 

[K)[C]-[NRR.][CRRt] = X[MRR,][CRR>] (48) 

The vector that represents the total number of nodal variables in GlR is divided into two vectors, one 
containing the variables [CRR*] and the other the rest of the variables: [C]T= {[CRR*]T, [Cin]T}. By 
partitioning the stiffness matrix [K], Eq. (48) can be written as: 

[K]-[NRR,][KRR._in] 

[Kin-RR*] [*iJ 

CRR* 

Lc'-. 
= X 

[MRR.] [0] 

.   [0]     [0]_ 

CRR* 

.Cin. 

(49) 

The relation in Eq. (49) is used to eliminate [C,n] by static condensation, thus obtaining the reduced 
eigenvalue problem: 

where 

[KsNCRR*l  ~  WMRR*liCRR*] 

[Ks] = [K]-[NRR.]-[KRR._in][Kin]-[Kin-RR.] 

(50) 

In Eq. (50) [AT$] is a full matrix. However the order of the matrices is relatively small, so the solution 
of the eigenvalue problem (using Cholesky factorization to compute [Kin]'1) is not expensive. Note 
that the derivation was performed for a single element. For multiple elements along T3 and T4 the for- 
mulation is identical and the matrices [K], [NR] and [MR] are obtained by an assembly procedure. 

4.5    Task 5: Generalized stress intensity factors for edge singularities in elasticity problems 

As in the case of the generalized flux intensity factors, the algorithm for the computation of the GSIFs 
is based on a L2 projection of the finite element solution into the space of functions characterized by 
the asymptotic expansion in terms of the eigenpairs. The algorithm can be summarized as follows: 
Consider a section perpendicular to a singular edge of an elasticity problem as shown in Figure 26. 
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The displacement field corresponding to the exact solution 
can be expanded around the singular edge at point P in terms 
of the eigenpairs and the generalized stress intensity factors: 

w(r,e) = 
ux(r, 0) 

uy(r, 9) 
uz(r, 9) J i= 1 

(51) 

where A,- are the GSIFs, A,,- are the eigenvalues and 
l/(Ö)}={/x(6),/y(0),/z(8)} are the corresponding eigenfunc- 
tions. Let {uFE(j,Q)} be the finite element solution of the dis- 
placement field around the singular edge. Then the L2 

projection of {uFE} into the domain QR is characterized by the 
FIGURE 26. Typical cross-section of an      following: 

edge singularity through 
point P. 

\ (u-tiFE)vdA = 0, for all ve S (52) 

where S is the space of eigenfunctions, and (v(r,0)}, is given by: 
N 

v(r,9) = J^/foG) 
;= l 

Substituting {u} and {v} into Eq. (52) and rearranging we have: 

where: 

{<U = rXl{fx], {<> } = /'{/,}. {<U = 'Vj 

Eliminating fi, from Eq. (53) and noting that dA=rdrdQ, the following system is obtained: 

A, e, *2 62 

i?,e, i«i e, 

(54) 

JJ{*x}L*J + {VKJ + MJL*J>r<'rdB<A>  =   lJWx}»FE\X + {*y}»FEly+{*z}»FE\Z)rd>-M (55> 

From the definition of {((>} in Eq. (54) and integrating in the radial direction, the system of equation 
reduces to: 
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»9 

KijAj = Rj 

(X, + x; + 2) _„(*■,+V 2) e2 

'    2 + x,+\. 1 ^-(e)/*;(e) +/>/(e)/w(e) +/z,(e)/y(e) ]^e 
fl' (56) 

Ä2e2 

Rj  =   \\r^*X)^FE\x+fy}UFE\y+fzjUFE^drdQ 

A, e, 

Solving the system of equations represented by Eq. (56) over the domain Q.R gives the values of A, 
(the GSIFs). Note that only a line integral is required to compute Ky and an area integral to compute 
Rj. The displacement vector from the finite element solution {uj^} has to be evaluated relative to the 
local coordinate system located at the extraction point P. 

The procedure implemented in Stress Check for the computation of the generalized stress intensity 
factors is the same as described for the heat transfer problem. First the elasticity problem is solved for 
the given topology, material properties and boundary conditions. After the finite element solution is 
available, the post-processing operation requires only to click with the mouse cursor along the singu- 
lar edge. The program then determines a cutting plane normal to the singular edge at the pick point 
and computes the eigenvalues and corresponding eigenvectors as explained in the previous section. 
With the eigenpairs and the displacement field obtained from the finite element solution the program 
constructs the system given by Eq. (56), the solution of which provides the GSIFs as illustrated in the 
next section. 

Stress Intensity Factors. Utilizing most of the functions and procedures developed for the computa- 
tion of GFIFs/GSIFs, an algorithm was implemented to compute the stress intensity factors for cracks 
in isotropic materials using the contour integral method (CIM). The mode 1 and 2 stress intensity fac- 
tor are computed from the finite element solution at any position along the crack front using the CIM 
as described in Ref. [15], page 227. The procedure is outlined in the following. 

For plane stress and plane strain, the stress intensity factors in mode I and mode II are given by: 

" (57) 

where A-£m\ m = 1, 2, is the first term in the asymptotic expansion of the solution in the neighbor- 
hood of the crack tip. Let (x,y) represent a local Cartesian coordinate system located at any point 
along the crack front in such a way that the local z-axis is tangent to the crack front at that point, and 
the x-axh is in the direction of the crack face. Let T be a circle of radius p centered at the point along 
the crack front, and assume that p is sufficiently close to the crack (Figure 27). It has been shown that 
A\ can be computed from a line integral as: 
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.«-J w r    -«   r        a? 
m  FE       FE 

(58) 

where W„, is an extraction function, TFE is the trac- 
tion vector along T computed from the finite ele- 
ment solution uFE, and J<Wm^ is the traction vector 
along T due to the extraction function. The traction 
and displacement vectors must be computed in rela- 
tion to the local coordinate system attached to the 
crack front. 

»     » x 

The terms in Eq. (58) are computed from the finite 
element solution of the cracked body along the con- 
tour r as follows: 

FIGURE 27. Contour around crack front. 

TFE ~ 
TJx, y) 

LTy(x, y) 'AFE 

a^cosG + x   sine 

LV
cose + VinejF£ 

u FE 

ux{x, y) 

uy(x, y) 
'AFE 

(59) 

The terms in Eq. (58) due to the extraction functions are given by: 

Wm = -^{^""(G)}, 
„W 

D (m) 
^-{T(m)(G)} 
D (m) 

(60) 

where G is the shear modulus, and D(1) = 7C(2K - 1), Z)(2) = 7C(2K + 3), where K depends on the Pois- 
son's ratio (v). For plane strain K = 3 - 4v, and for plane stress K = (3 - v)/(l + v). Also, the vector 
functions that depend on the variable 9 are given by: 

{y(1)(6)} = 

n    e   i    36 K--jcos---cosy 

A . e   l . 36 
K+ -  sin---sin — 2J     2    2       2 

{¥2)(6)} = 

(      3\ ■ 6    1 .  39 
,K + 2>in2 + 2SmT 

H> 3^1      9    1      36 K--JCOS---COS- 

(61) 
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Y(1)(0) 

Y(2)(6) 

(3     8    1      56^1     .   (\ . 56    1 . ev Q -cos-+-cos— COS0+ -sm—--sin- sin8 \2     2    2       2; i2      2     2     2j 

fl.59    1.8^     a    ( 
USinT-2Sin2jCOSe + l 

5      0  1      56,. a -COS---COS— ismO 

56 3 6, . . — + -cos- sm8 2     2      2 ^--s,n---sinTJcos6 + [-cos 

1  . 56    3      ff\     .    (   1 .  6    1 .  56V 0 
2SinT    2COS2jCO       I" 2Sm2    2SmTjSin 

(62) 

In general, a three-dimensional problem is neither a plane stress nor a plane strain problem. Therefore 
the question is how to determine the value of K for the extraction function in Eq. (61). The procedure 
to determine which value of K to use is based on computing the stress components ax, cy, az at a point 
in front of the crack (see Figure 27). Next define y as the ratio: 

Y = ax + ay 

If y is close to Poisson's ratio (v), then the condition approaches that of plane strain. If is close to zero, 
then is plane stress. The approach implemented in Stress Check was to compute the value of y at a 
point along the integration path (r = p, 6 = 0), and apply the following rule to determine K: 

K = < 
3-4v   if  (Y> 0.85v) 
3-v 
1+v if   (y< 0.85v) 

The advantages of this implementation are improved computational speed and the ability to include 
curved crack fronts. The improvements in performance are realized because the eigenvalues and cor- 
responding eigenvectors need not be computed prior to computing the stress intensity factors. An 
example of the implementation is presented in the next section. 

4.6    Task 6: Model problems - Eigenpairs and generalized stress intensity factors 

The procedures described in the previous sections for the computation of the eigenpairs and the 
corresponding generalized stress intensity factors for edge singularities for elasticity problems in 3D, 
are illustrated in the following. 

Elasticity problem 1: Isotropie reentrant corner. The first example of the implementation of the 
algorithm for the computation of the eigenpairs and generalized stress intensity factors for edge sin- 
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gularities, consider the traction-free isotropic L-shaped domain shown in Figure 28 loaded along the 
boundaries by the Mode 1 and Mode 2 stress components as given in Ref. [15]. The load is applied to 
the faces labeled 1, through 4 in Figure 28. The two free faces perpendicular to the singular edge were 
constrained from motion in the z-direction. 

The finite element mesh created in Stress Check consisting of 18 solid elements with two layers of 
geometrically graded elements towards the reentrant corner is also shown in the figure. The elements 
were graded with a common factor of 0.15. The problem was solved for polynomial order ranging 

FIGURE 28. Elasticity problem 1. L-shaped domain. 

from p=l to 8. The estimated relative error in energy norm for the sequence of eight solutions is 
shown in Figure 29. For p=8 (5338 DOF) the global error of the finite element solution is less than 
1%. 

ErrorEstimate 
L-SHAPED DOMAIN 

(0) Solution = SOL, runs #1 to #8 

Run # DOF Total Potential Energy Convergence Rate * Error 

1 85 -4.299854922149e-001 
2 307 -4.54B143062914e-001 
3 553 -4.571877574981e-001 
4 988 -4.576467179110e-001 
5 1630 -4.577446575364e-001 
6 2533 -4.577780333023e-001 
7 3751 -4.577941449008e-001 
8 5338 -4.578038073468e-001 

0.00 24.66 
0.87 8.11 
1.32 3.73 
1.10 1.97 
0.B0 1.32 
0.61 1.01 
0.54 0.82 
0.54 0.67 

Estimated Limit -4.578246109968524e-001 

FIGURE 29. Estimated relative error in energy norm for elasticity problem 1. 
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The exact values of the first three eigenvalues and the corresponding GFIFs are Ä,1=0.544483, 
Apl.O, ^2=2/3, A2=0.0 and A,3=0.908529, A3=1.0, respectively. The eigenvalues computed in Stress 
Check are shown in Figure 30, together with the three components of the first and third eigenvectors. 
Note that all the eigenvalues are real. 

REAL E-functions associated with E-vaJue: 5.444837e-001 ♦ im O.OOOOOOe+000 

Number of E-paics: 4, Solid angle: 2.700000e+002 
Global cooed, of point along edge: 
X=0.00000e+000, Y=0.00000e+ODO, Z=-4.94063e-005 
No. 1, Eval= 5.444B37e-001 + I 0.D00000e+D00 

■■  6.666667e-001 + I 0.000000e+000 
= 9.0B5292e-001 + I 
■■  1.000000e+000 + I 

No 
No 
NO 

2, Eval= 
3, Eval= 
4, Eval= 

000000e+000 
000Q00e+000 

Legend 

■-* U*_1 
-■*—    Uy_1 
-H—    UzJ 

REAL E-functions associated with E-value: 9.085292e-001 + Im O.OOOOOOe+000 

Theta 

FIGURE 30. Eigenpairs for elasticity 
problem 1. 

1.0 

0.0 

-1.0 

-2.01 

Legend 

r 
Lbe3 

Uz_3 

100 200 

Theta 

300 400 

The values of the GSIFs computed by the numerical procedure described in the previous section are 
shown in the Figure 31. The tabular data shows the GSIFs computed from each finite element solu- 
tion. The graph shows the values of Al and A3 as a function of the number of degrees of freedom 
(DOF). The stress intensity factors are practically coincident with the exact values. 
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GSIFs 
L-SHAPED DOMAIN 

(0) Solution = SOL, runs 1 to 8 (nodes=22-22,angle=270.0), 
Generalized Stress Intensity Factors, Int. Radius =0.5 

Run DOF Radius Al A2 A3 A4 

1 85 5.000000e-001 -7.107936e-001 1.446139e-014 -9.391302e-001 B.031775e-001 

2 307 5.000000e-001 -9.382039e-001 1.445316e-006 -9.890786e-001 8.060001e-001 

3 553 5.000000e-001 -9.836161e-001 3.560110e-008 -9.983398e-001 8.104599e-001 

4 988 5.000000e-001 -9.926223e-001 3.474569e-011 -1.000214e+000 B.112030e-001 

5 1630 5.000000e-001 -9.936874e-001 4.783306e-010 -1.000123e+000 8.114920e-001 

6 2533 5.000000e-001 -9.946648e-001 4.768257e-010 -9.999739e-001 8.113539e-001 

7 3751 5.000000e-001 -9.955081e-001 -1.794964e-008 -9.999516e-001 8.113397e-001 

6 5338 5.000000e-001 -9.961335e-001 -9.754908e-010 -9.999505e-001 8.113303e-001 

-0.6T 

-0.8 

-0.9 

-1.0 ♦       t 
1000        2000        3000        4000        5000        6000 

DOF 

FIGURE 31. Generalized Stress Intensity Factors for elasticity problem 1. 
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Elasticity problem 2: Crack in isotropic material. Consider the case of a through-thickness crack in 
a thick isotropic plate under tension loading as shown in Figure 32. After the finite element solution is 

FIGURE 32. Through-thickness crack in thick plate. Undeformed and deformed configurations. 

obtained, the procedure for the computation of the stress intensity factors requires the user simply to 
point and click with the mouse cursor to the desired location along the crack front. 

The procedure implemented in Stress Check determines a cutting plane normal to the tangent to the 
crack edge at the pick point and extract the global components of the stresses and displacements along 
a circular path contained in the cutting plane. These stresses and displacements are projected into the 
cutting plane and integrated with the extraction function to compute the contour integral described in 
the previous section. 

Figure 33 shows the results of the stress intensity factors (SIFs) obtained from a set of finite element 
solutions for polynomial orders ranging from p=l to 6 at three locations along the crack front. Z=0.5 
represents the center of the plate and Z=0.0 is one of the free faces. Note the variation of the SIFs 
along the crack front, with the largest value of Kl at the center of the plate. The estimated limits for 
the SIFs are also included which indicate the strong convergence characteristics of the implemented 
extraction procedure. 

Elasticity problem 3: Inclusion problem. Consider a composite body consisting of two dissimilar 
isotropic, homogeneous and elastic wedges, perfectly bonded along the interfaces. The body is loaded 
on the circular boundary by the stress field corresponding to the exact solution of the asymptotic 
expansion about the singular point as given in Ref. [17]. The normal displacement is set to zero in the 
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Contour Integral Method: iagle-3 60, Radius-2.50e-01 

Edge location: X-8.05e-17, Y-1.21e-17, 
Run U DOF Kl 

Z-5.00e-01 
TZ  

108 2.344084e+000 
3 69 4.3012Sle+000 
678 4.8610SSe+000 

118S 5.160177e+000 
1914 5.2 6B396e+000 
2913 |5.300811e+000 | 

B.08S629e-002 
3.570169e-002 
3.683432e-002 
3.276876e-002 
3.567037e-002 
3.498816e-002 

Estimated Limits 
Limit value for Kl 
Limit value for K2 

5.319954e+000 (diff: 0.3 6«) 
3.497732e-002 (diff: 0.03%) 

Edge location: X-8.0Se-17, Y-1.21e-17, Z-2.51e-01 
Run U DOF        Kl T2 

108 2.352391e+000 
3 69 4.200244e+000 
678 4.802SSSe+000 

1185 S.153232e+000 
1914 5.198848e+000 
2913 |5.189015e+000 | 

7.86133Se-002 
3.S80445e-002 
3.711076e-002 
3.338650e-002 
3.617087e-002 
3.574476e-002 

Estimated Limits 
Limit value for Kl 
Limit value for K2 

5.146324e+000 (diff: 0.83%) 
3.558739e-002 (diff: 0.44%) 

Edge location: X-8.05e-17, Y-1.21e-17, |Z-2.64e-02 
Run #      DOF Kl K2 

108 2.3S9888e+000 
369 3.93S169e+000 
678 4.649050e+000 

1185 4.899167e+000 
1914 4.893078e+000 
2913 |4.862767e+000 I 

7.658902e-002 
3.609123e-002 
3.783 665e-002 
3.462 604e-002 
3.787856e-002 
3.679010e-002 

Estimated Limits 
Limit value for Kl 
Limit value for K2 

4.856227e+000 (diff: 0.13%) 
3.682425e-002 (diff: 0.09%) 

FIGURE 33. Stress intensity factors for 
elasticity problem 2. 

two lateral faces. Figure 34 shows the description of the problem and the finite element mesh consist- 
ing of 10 solid elements. The first three eigenvalues characterizing the stress singularity along the 
edge are: JL, = 0.5124722, ^ = 0.6001175 and X3 = 0.7309757. 

A sequence of finite element solutions was obtained for polynomial orders ranging from 1 to 8. The 
estimated relative error in energy norm is shown in Figure 35. The first four eigenvalues computed in 
Stress Check are shown in Figure 36, together with the corresponding generalized stress intensity fac- 
tors (A,-, / = 1 to 4). Note that all the eigenvalues are practically identical to the analytical values, and 
the excellent convergence characteristics of the GSIFs with increasing number of degrees of freedom. 

Finally, the three components of the first three eigenvectors are shown in Figure 37. 
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FIGURE 34. Elasticity problem 3. Notation and mesh. 

Run # 

(1) 

Error 
Inclusion problem 

Solution - SOL, runs #1 Co #8 

Dor Total Potential Energy Convergence Rate % Error 

1 41 -5.453568540785e-004 0.00 31.96 
2 154 -5.98051213 6567e-004 0.72 12.40 
3 287 -6.0419 652 03 489e-004 0.86 7.24 
4 520 -6.057759815888e-004 0.58 5.14 
S 868 -6.063591919594e-004 0.44 4.11 
6 . 1361 -6.0666902593lSe-004 0.40 3.43 
7 2029 -6.068609125881e-004 0.39 2.93 
8 2902 -6.069886028295e-004 0.39 2.55 

Estimated Limit -6.073828017459567e-004 

FIGURE 35. Estimated relative error in energy norm for elasticity problem 3. 

Elasticity problem 4: Angles-ply anisotropic laminate. Consider the singularities associated with a 
composite laminate with ply properties typical of a high-modulus graphite epoxy material. The mate- 
rial coefficients in the principal direction of the fibers are: 

£L=20xl06 psi, £7=2.lxlO6 psi, GL7=G77=0.85xl06 psi, vL7=V77=0.21 
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Number of E-pairs: 4, Solid angle: 3.600e+O02 
Global coord, along edge: X»0.0, Y-0.0, Z»7.4Se-03 
No. 1, Eval- 5.124722e-001 + I 0.000000e+000 
No. 2, Eval- 6.001175e-001 + I 0.000000e+000 
No. 3, Eval- 7.309757e-001 + I 0.000000e+000 
No. 4, Eval- 1.000000e+000 + I 0.000000e+000 

G3IF 
Inclusion problem 

(2) Solution - SOL, runs 1 to 8 (nodes-7-7,angle-3 60.0), 
Generalised Stress Intensity Factors, Int. Radius - 0.2 

Run Dor Radius Al 12 A3 A4 

1 41 2.000e-001 8.566e-005 -1 135e-016 3.971e-004 2 663e-004 
2 154 2.000e-001 1.286e-004 -1 684e-007 3.952e-004 1 704e-004 
3 287 2.000e-001 1.423e-004 -8 186e-009 4.023e-004 1 694e-004 
4 520 2.000e-001 1.466e-004 -8 658e-012 4.046e-004 1 724e-004 
5 868 2.000e-001 1.490e-004 -4 625e-012 4.055e-004 1 728e-004 
6 1361 2.000e-001 1.505e-004 -4 364e-012 4.059e-004 1 733e-004 
7 2029 2.000e-001 1.515e-004 4 630e-012 4.062e-004 1 73 6e-004 
8 2902 2.000e-001 1.522e-004 4 145e-012 4.063e-004 1 738e-004 

Est.Limit Al-l.S51560e-004 ( 1.91%) 

FIGURE 36. Eigenvalues and GSIFs for elasticity problem 3. 

where L and T refer to the fiber and transverse directions, respectively. There are three plies in the 
laminate and they are oriented at + or - 45 degrees about the global y-axis (Figure 38). Of interest are 
the eigenvalues associated with the free edge singularity between two plies, and those associated with 
a delamination (edge crack) between two plies. In the case of the free-edge singularities the eigenval- 
ues reported in Ref. [18] are: 

Xi = 0.974424, ^,3 = 1.88147 ± i 0.234005, X4<5 = 2.511526 ± 1 0.792817 

For the delamination (edge crack), the reported values are: 

X1 >2 = 0.50 ± i 0.0343, X3 = 0.50 

For the computation of eigenvalues in Stress Check it is necessary to perform at least one solution. In 
this case the mesh shown in Figure 38 consisting of 6 solid elements was solved for p=l only. The 
eigenvalues were then extracted at the free edge singularity and at the crack singularities indicated in 
Figure 38. The results are shown in Figure 39. As can be seen they match perfectly the values 
reported in Ref. [18]. 

Elasticity problem 5: Composite patch. Consider the a composite patch bonded to a metallic struc- 
ture as shown in Figure 40. Assuming that the thickness of the adhesive is negligible, the composite 
patch is in full contact with the metal. Therefore we want to investigate the edge singularity along the 
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REAL E-functions associated with E-value: 5.124722e-001 + Im O.OOOOOOe+000 

2T 
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FIGURE 37. Eigenvectors for elasticity 
problem 3. 

composite patch as a function of the termination angle a. The material coefficients in the principal 
direction of the fibers are: 

£L=20xl06 psi, ET=2.1X10
6
 psi, GL7=G77=0.85xl06 psi, vz,7=v77=0.21 

with the fibers rotated an angle ß about the y-axis. For the aluminum plate the following properties 
are considered: Zi^lO.SxlO psi and v=0.3. We will investigate the eigenpairs obtained with a ply ori- 
entation of ß=45° while changing the termination angle from a from 20° to 90°. The finite element 
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Singular edge 

Delamination (edge crack) 

FIGURE 38. Elasticity problem 4. Notation and Mesh. 

Nunber of E-palrs: 8, Solid angle: 180 
Global coord, of point along edge: 

X- 1.0, 7-0.2, Z-0.51B353 

No. 1, Eval- 9.74423Be-001 + I 0.000000e+000 
No. 2, Eval» 1.000000e+000 + I 0.000000e+000 
No. 3, Eval- 1.000000e+000 + I 0.000000e+000 
No. 4, Eval- 1.881466e+000 + I 2.340048e-001 
No. 5, Eval- 1.881466e+000 + I-2.340048e-001 
No. 6, Eval- 1.999999e+000 + I 0.000000e+000 
No. 7, Eval- 2.511439e+000 + I 7.9292S9e-001 
No. B, Eval- 2.511439e+000 + I-7.929259e-001 

Edge Singularity 

Delamination 

Number of E-pairs: 4, Solid angle: 360 
Global coord, of point along edge: 

X-0 .5, Y-0.1, Z-0.4686S9 

No. 1, Eval- S.000003e-001 + I 3.434452e-002 
No. 2, Eval- 5.000003e-001 + I-3.434452e-002 
No. 3, Eval- 5.000011e-001 + I 0.000000e+000 
No. 4, Eval- 1.000000e+000 + I 0.000000e+000 

FIGURE 39. Eigenvalues for elasticity problem 4. 
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FIGURE 40. Elasticity problem 5. Composite patch over aluminum plate. 

mesh consisting of three solid elements used for the numerical analysis is shown in Figure 41. Since 

^s*^ 

FIGURE 41. Finite element mesh fo elasticity problem 5. 

the objective of the analysis is the computation of eigenpairs, it is sufficient to perform a finite ele- 
ment analysis at p=l. The results of the analysis using the procedures implemented in Stress Check 
are shown in Figure 42. Note that the first and second eigenvalues become smaller as the termination 
angle increases and their magnitudes are minimum (Xi=0.66418, A,2=0.750854) for a = 90°, which 
corresponds to a solid angle of 270°. If the patch would have been made of aluminum and the termi- 
nation angle a = 90°, the first two eigenvalues would be: A,j =0.544837, 7^=0.666661, which is a 
'stronger' edge singularity. These results are in agreement with those presented in Ref. [18]. Finally, 
Figure 43 shows the three components of the eigenvector associated with \\ =0.66418 for a = 90°. 
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Number of E-pairs: 
No. 
No. 

1, 
2, 

2, 
Eval« 8.283 671e-001 
Eval- 9.661601e-001 

Sojrid angle: 200 
+ I 0.000000e+000 
+ I 0.000000e+000 

Number of E-pairs: 2, Solid angle: 210 
No. 1, Eval- 7.866517e-001 + I 0.000000e+000 
No. 2, Eval- 9.46699Se-001 + I 0.000000e+000 

Number of E-pairs: 2, Solid angle: 220 
No. 1, Eval- 7.566947e-001 + I 0.000000e+000 
No. 2, Eval- 9.234772e-001 -I- I 0.000000e+000 

Number of E-pairs: 2, Solid angle: 230 
I O.OOOOOOe+000 No. 1, 

No. 2, 
Eval- 7.37S793e-001 
Eval- 8.947598e-001 + I 0.000000e+000 

Number of E-pairs: 2, Solid angle: 240 
No. 1, Eval- 7.195816e-001 + I 0.000000e+000 
No. 2, Eval- 8.597589e-001 + I 0. OOOOOOe-KJOO 

Number of E-pairs: 2, Solid angle: 250 
No. 1, Eval- 7.023354e-001 + I 0.000000e+000 
No. 2, Eval- 8.206522e-001 + I 0.000000e+000 

Number of E-pairs: 2, Solid angle: 260 
No. 1, Eval- 6.B4113 6e-001 + I 0.000000e+000 
No. 2, Eval- 7.827444e-001 + I 0.000000e+000 

Number of E-pairs 
No 
No. 

1, 
2, 

Eval- 
Eval- 

2, Solid angle 
+ I 6.641812e-001 

7.508541e-001 

270 
0.000000e+000 
0.000000e+000 

a = 20 

a = 50° 

a = 90° 

RGURE 42. Eigenvalues for elasticity problem 5. 

4.7    Task 7: Average stress/strain 

A set of failure criteria for composite-laminated bonded structures based on stress averaging and 
material nonlinear analysis were identified as a necessary complement to the set of tools available for 
analysis. These criteria include: 

• Criteria for failure in the composite adherents (laminate): Two failure modes, in-plane failure and 
out-of-plane failure, are considered separately for the composite adherents. For in-plane failure, 
maximum stress, maximum strain, Tsai-Wu, Tasi-Hill and Hashin criteria are widely used in the 
industry. For the out-of-plane failure, a quadratic criterion for interlaminar normal and shear 
stresses is considered. Because of the stress singularity and high stress gradient near the edge of the 
laminate or near the edge of a bonded joint, the use of the average stress is necessary as follows: 
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REALE-functions associated with E-value: 6.641812e-001 + Im O.OOOOOOe+000 

2.0T 

Legend 
-#— uxj 
-*—- Uy 1 
■*—    UzJ 

FIGURE 43. Eigenfunctions associated with ^ =0.66418 for a = 90°. Elasticity problem 5. 

l<v +U0J 
(63) 

where 

-       if"0   ,        -        l f° °Z =  -1    °A *** = -J    T aoJo aoJ
0 

jk (64) 

are the average interlaminar normal and shear stresses in the composite, a0 is a characteristic 
length (of the order of the lamina thickness), c0 is the flatwise tensile strength of the composite and 
x0 is the interlaminar shear strength of the composite. A similar relation can be obtained for three 
dimensions, where the line integral is replaced by an area integral. 
Criterion for failure at the adhesive/adherent interface: Failure along the interface is similar to the 
interlaminar or out-of-plane failure of the laminate. 
Criterion for failure in the adhesive layer: Two major approaches have been applied to determine 
failure in the adhesive layer: Stress/strain based criteria and fracture or energy based criteria. Based 
on the data available and based on the anticipated users of the analysis tool, a stress/strain based 
criterion is recommended. Similar to the interlaminar stresses, very steep stress/strain gradients in 
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the adhesive layer can be expected at the end of the bonded joint. To relieve the effects of this 
stress concentration, an average strain criterion is therefore recommended. This criterion can be 
expressed as: 

er-fcr- ,y0) '~l (es) 

where the shear and peel strain terms are averaged over a characteristic length OQ of the order of the 
adhesive thickness, and are computed from a material nonlinear analysis of the bonded joint. The 
adhesive failure strains, £Q and y0 include the plasticity component and are highly dependent on the 
material model used in the analysis. 

A capability was implemented in Stress Check to compute average stress/strain along element edges, 
element faces, element volumes and arbitrary curves. The average is understood in the integral sense, 
and when appropriate, the user controls the number of points used for the numerical integration. If the 
average is computed along an element edge, face or volume, then the integration is performed using 
Gauss quadrature, and the number of integration points is selected internally by the program. If the 
average is performed along an arbitrary path which runs inside one or more elements, then the inte- 
gration is performed using the trapezoidal rule and the user controls the number of integration points. 

For example, if the average stress cz is requested along an element edge of length üQ, the program 
performs the numerical integration indicated in Eq. (64). The arc length a0 is determined automati- 
cally based on the screen selection. If the selected object is an element face, the integral is performed 
over the area of the face. If the selected object is an element, then a volume integral is performed. The 
length, area or volume of the selected object is also reported with the corresponding average quantity. 
The procedure to compute the average is illustrated with an example. 

Example: Consider a typical composite bonded joint under axial loading shown in Figure 44. After 
the linear solution is obtained, the user selects Results > Points and completes the extraction form for 
the desired average quantity as shown in Figure 45. In this example, the average of ay (labeled Sy in 
the form) is computed along the indicated element edge for a sequence of finite element solutions 
ranging from p-level=l to 8. The result shown includes the average for each run with the convergence 
information and the length of the selected edge. 

The quantities for which the average can be computed include the displacement components in 
the global system, all directional strain and stress components, principal strains and stresses. Addi- 
tionally, the average can be computed for quantities extracted in a local coordinate system and any 
other function that can be described using the formula option in Stress Check. This allows formulat- 
ing an expression of "margin of safety" based on average quantities for any failure mode in the adhe- 
sive, adherent or adhesive/adherent interface. For example, an expression for the "margin of safety" 
(MS) for the interlaminar out-of-plane failure of composite adherents can be written as: 
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FIGURE 44. Composite bonded joint in tension. 

— ®*®- (66) 

In this case, the average of the normal and shear stresses are computed first before the expression of 
MS is evaluated. 

4.8    Task 8: Limit load analysis 

The evaluation of a composite bonded joint requires a material nonlinear analysis for the design 
load followed by the determination of the failure loads based on some predefined criteria. The evalu- 
ation of failure load by an automatic procedure, that can be utilized from the handbook framework of 
Stress Check, required the development and implementation of a special nonlinear solution procedure 
consisting of two steps: 

• Design load: First the design load is applied to the bonded joint and, after a material nonlinear 
analysis is performed, the margins of safety are computed for the different modes of failure identi- 
fied for the joint as described in the previous section. For each mode of failure a different expres- 
sion for the margin of safety is required, which may be based on average quantities as described 
above. 

• Failure load: After the design load analysis, it is necessary to determine the failure load based on 
the margins of safety. The evaluation of failure load by an automatic procedure from the handbook 
framework of Stress Check required developing a special nonlinear solution procedure which per- 
forms automatic nonlinear runs with load increments specified by the user and checks at the end of 
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Integral Average Extraction 

(0) Solution - SOL, runs #1 to #8 
Total length of integration path ■ 4.500000e-003 

Run » Dor Sy 

1 147 4.286346e+003 
2 415 1.310178e+O04 
3 711 1.168556e+004 
4 1127 1.2 63005e+004 
5 1663 1.284542e+004 
6 2319 1.283276e+004 
7 3095 1.27712 6e+004 
8 3991 1.271559e+O04 

Error Est] Plot    | Min/Max Pointe JResutentj ^ I ► 

Average values for 
* increasing p-levels 

Est.Liiait-1.263160e+004   (  0.66%) 

|Select "3 [Edge" 

Input    | Settings | File 

*" 11 Selection        *J 

Solution Run    Type      DOF 
SOL ,8  ,Lin. 3991 

|SOL 3'RuK-fT~ to fT" 

Graph  j Report Format pie Verbose | 

Aux. Variable 

Fmc®: IHMTJ »ofpte.: 
Display points I Average 

r- Boundary- 

Pi Range:    J 

PZ Range:    | tof 
Location- 

*r i*r 
Formula- 

System: | Global _£| 

Accept j      Cancel 

FIGURE 45. Extraction of the average ay along an element edge. 

each load step to determine whether any of the failure criteria have been exceeded (MS < 0). Once 
the first failure mode is reached, it is possible to stop the analysis or continue to increment the load 
until all margins are exceeded. 

The implementation of the automatic procedure was developed using the material nonlinear capability 
of Stress Check based on the deformation theory of plasticity and the von Mises yield criterion. Only 
the adhesive material have elastic-plastic properties which can be defined as elastic-ideally-plastic, 
bilinear, Ramberg-Osgood or by five parameters that characterize the stress-strain curve. 

Example: Consider the bonded lap joint shown in Figure 46. Only one quarter of the joint is consid- 
ered for the 2D plane-strain analysis as shown in the figure. The first few layers of the laminate are 
included explicitly and the rest are lumped into a sublaminate. The following material properties are 
specified for the composite layers and the adhesive: 
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X» 

FIGURE 46. Bonded lap joint. 

Composite: £L=23.5xl06 psi, £T=1.3X10
6
 psi, GL7=0.55xl06 psi, G^O^xlO6 psi, vL7=0.3, 

V77=0.46 

Adhesive: £=251,900 psi, v=0.34, oY= 11,600 psi (elastic-plastic). 

A design load is applied to the bonded joint (P=2,000 lb), and a material nonlinear analysis is per- 
formed to determine whether any of the following margin criteria are exceeded at the locations indi- 
cated in Figure 47: 

«*-'-£•    "*--{$♦(# (67) 

Note that a total of 10 margin criteria are considered for the composite joint, 5 on the left side and 5 
on the right side. The failure types are delamination (Delam), interface failure (Interf) and adhesive 
failure (Adhes). 
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Criteria Delam Interf Adhes 
Extraction Min/Max Edge Edge 
Margin of Safety MS2 MS2 MS! 
Average NO YES YES 
Locations 4 4 2 

DelamUL 

InterfUL 

InterfDL 

DelamUR 

InterfUR 

InterfDR 

DelamDL      DelamDR 

FIGURE 47. Extraction location and type for limit load analysis. 

The load is increased (by 100 lb increments) and the nonlinear analysis continues until convergence is 
achieved. At the end of each converged solution all margin criteria are checked and if any margin is 
zero or negative (MS < 0), the magnitude of the load and the corresponding margin value is recorded. 
A solution record is also kept for further post-processing. Figure 48 shows the settings of the limit 
load interface in Stress Check. 

After the sequence of linear solutions is available, one solution is selected to start the nonlinear analy- 
sis. The type of nonlinear run (material or general) is selected together with the convergence criteria 
(stress or energy), allowable tolerance (%) and the iteration limit for each load increment. Next, the 
load parameter information is completed, including the load increment and the upper bound for the 
load. It is possible to stop the analysis after the first margin is exceeded by checking the box labeled 
'stop at 1st M.S. failure'. If left unchecked, the solution will proceed until all margin criteria are 
exceeded or the upper bound of the load is reached, whatever occurs first. Finally, all the relevant 
margin criteria defined for the problem are selected in the scroll window and the limit load analysis is 
initiated. 
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Selected margin 
criteria 

Linear | Nonlinear| Modal | Measurement LimitLoad |SOLVE 11 
Solution Run   Type    DOF                     i                              i 
— -Type-   Material (NL Mat)      ^1 
SOU A   .Lin. . 3008            3                                              , 
SOL1 .5  .Lin. . 4484                  Convergence:  I Energy    j»l 
SOL1 .6   .Lin. .6312 
SOL1 .7   .ün. . 8492 

Linear Sol.: SOL1 

Margin Criteria 
DelamUL 

Run: •r. 
Tolerance (H):   |25 

Iteration Limit     140 

r Stop at 1st MS. failure 

DelamUF 
DelamDF 

rLoad- 
Param.: 

Step: 100 
>^ 

2J Wöat 

Limit 

2.000e+003 

5000 

> 
Nonlinear 
settings 

Initial load 

Upper bound 

- Load increment 

FIGURE 48. Limit load interface. Setting for example problem. 

After the limit load analysis is completed, a report window provides a summary of the results as 
shown in Figure 49. Two margin criteria were exceeded: An interface failure occurred on the left side 

Limit Load Summary 
Plate with central hole. NonLinear model 

ID= SOLI, run #8 

Criteria Number Margin Criteria Limit Load Margin Value 

1 DELAMUL 5.000000e+003 5.114385e-001 
2 DELAMDL 5.000000e+003 1.555231e-001 
3 DELAMUR 5.000000e+003 9.346218e-001 
4 DELAMDR 5.000000e+003 6.299574e-001 
5 ADHESL 4.000000e+003 -2.606208*-002 
6 ADHESR 5.000000e+003 8.395282e-001 
7 INTERFUR 5.000000e+003 7.228068e-001 
8 INTERFDR 5.000000e+003 6.769590e-001 
9 XHCTRFDL 2.400000e+003 -1.849117e-002 

10 INTERFUL 5.000000e+003 1.762295e-001 

2 out of 10 Margin criteria exceeded. 

FIGURE 49. Results from the limit load analysis of the example problem. 

of the joint just below the adhesive line (InterfDL) at a load of 2,400 lb, and an adhesive failure devel- 
oped on the left side (AdhesL) at 4,000 lb. 
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Finally, Figure 50 shows the elastic-plastic equivalent (von Mises) stress distribution in the adhesive 

layer for P=2,400 lb, P=4,000 lb and P=5,000 lb. 

P = 2,400 lb 
fips=s= BBS 

P = 4,000 lb 

P = 5,000 lb 

FIGURE 50. Elastic-plastic equivalent (von Mises) stress distribution following 
a limit load analysis. 

StressCheck V5.0.a6 
NLMAT ID - INTERFDL 5 

Run • 8 . 00F-11D24 
Fnc. • Seq 

Max •   l.lBOOe+004 
Min ■ B.6694e+001 

:, ■ .<* 

I 

1.16009+004 

1.0771e+004 

9.9429e+003 

9.1143e+003 

8.2857e+003 

7.4571e+003 

6.6286e+003 

5.8000e+003 

4.9714e+003 

4.1429e+003 

3.3143e+003 

2.4857e+003 

l.B571e+003 

8.2857e+002 

0.0000e+000 

4.9    Task 9: Sub-laminate property input 

A capability was implemented to facilitate the input of orthotropic material properties for individ- 
ual plies and for sub-laminate properties for 2D plane-strain and 3D analyses. 

• Individual plies: When the ply-angles are not contained in the standard 2D working plane (the 
plane-strain XY plane), the material matrix needed for the 2D analysis are extracted from the 3D 
material matrix. The material coefficients are entered in the material directions, and then assigned 
to the elements together with the ply angle information. The program performs all necessary trans- 
formations to compute the equivalent 2D properties in the XY work plane. The appropriate 3D 
properties are be applied when the planar model is extruded into 3D as well. 

• Sub-laminates: When a set of plies need to be combined in a single layer (sub-laminate), the prop- 
erties of the sub-laminate are obtained by homogenization. Again, the 3D material coefficients in 
the material axes of the composite are entered together with the stacking sequence of the sub-lami- 
nate, and the program computes the equivalent 2D properties in the Stress Check XY work plane 
for the stack. The appropriate 3D properties are applied when the planar model is extruded into 3D 
as well. 
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The procedures implemented in Stress Check to account for these two activities include the following: 

1 The material coefficients of a single orthotropic ply are entered in the direction of the material axes 
(Figure 51a). Nine engineering coefficients (En, E22, £33, G^ G23, ^3i> V12> v23> vn)in tne 

direction of the material axes and the ply thickness must be provided. The three coefficients of 
thermal expansion (an, «22, OC33) and the mass density can also be entered, but they are not 
required unless there is thermal loading or a modal analysis is needed. 

2 After the material properties for a single ply are entered, the ply group information must be pro- 
vided. This includes the angular orientation of each ply in the group, in accordance with the fol- 
lowing convention: A positive ply angle (6) is measured as a counterclockwise rotation about the 
z-axis of a local coordinate system (xyz). The z-axis of the local is aligned with the material 3-axis 
as shown in Figure 51b. 

'plane-strain' 
plane 

. ... .   . . (b) Rotation of material axes 
(a) Material axes v ' 

FIGURE 51. Material coordinate systems for orthotropic plies. 

3 The ply groups are assembled into a stack by providing the total number of layers in the laminate, 
defining whether the stack is symmetric or not and entering the stacking sequence based on the ply 
group names. This procedure provides a great flexibility, since various ply groups of different 
material properties can be assembled together to represent a single sub-lamina. 

4 Finally, the stack is assigned to the elements in the mesh identifying the local coordinate system, 
the z-axis of which is assumed to coincide with the material 3-axis and must be perpendicular to 
the plane of the ply (Figure 51b). The case of a single ply assigned to an element is treated as a par- 
ticular case of a sublaminate with one orthotropic layer. 

The two-dimensional material stiffness matrix needed for the plane-strain analysis is then extracted 
form the three-dimensional material matrix in global coordinates (XYZ). When a group of laminae is 
assigned to a single element, the three-dimensional effective properties are computed by homogeniza- 
tion, following the procedure described in Ref. [19] and discussed in detail below. 
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4.9.1   Formulation 

The 3D stress-strain relations for an orthotropic material in the material coordinate system (Figure 
51a) can be written as: 

where, 

{ö} = [C]{1] (68) 

{0} = 

<>11 Ell c„ c12 C13 0    0    0 

°22 £22 c22 c23 0   0   0 

°33 
T12 

{£} = 
e33 

Yl2 

[C] = 
c33 0   0   0 

sym.        C«0    0 
T23 Y23 £44  0 

.1'31. Y31. L                       c5 

(69) 

[C] is the material stiffness matrix with nine independent constants. The relation between the C,y and 
the engineering coefficients is given by (Ref. [20], page 41): 

C„ = (l-v23v32)V£u, C22 = (1 -v31v13)V£22, C33 = (l-v12v2I)V£. 33 

C12 = (v21+v23v3I)V£:11, C„ = (vl3 + v23v12)V£33, C23 = (v32 + v12v31)V£:22 

C44 = G23. £",_, - G31, Cgg - GI2 

V = (l-vl2v21-v2,v32-v31v13-2v12v23v31) 
-1 

V21   = V12^' 
^22 

V,-,   =  V, 
'33 V„   =  V, 

'33 
'32   ^   v23^' v31   ~   V13F £22 £,u 

Next consider the situation shown in Figure 51b, in which a rotation 6 about the z-axis (coincident 
with the material 3-axis) is performed for the kth layer in the laminate. The stress-strain relations in 
the xyz local system can be written as: 

,(*>! {o}xyz = [Qw]{e\ xyz 
(70) 

where, 
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Wxyz = 
"xy 

•yz 

{el«z = [ßw] = 

Ö,l   ö,2   ß,3 Ö16    0       0 

Ö22   Ö23 Ö26    0       0 

Ö33 Ö36    0       0 ■ 

sym.        Ö66   0     0 

Ö44 Ö45 

Ö55 

-\(k) 

(71) 

The material matrix for the fcth layer in the local system [Q(k)] is obtained by the following transforma- 
tion (Ref. [20], page 31): 

[7-] = 

[Qw] = [T]T[C][T] 

rn       n    0 0  0 mn 

n       rn    0 0   0 -mn 

0       0    10  0 0 

0       0    0m-« 0 
0       0    0 n m 0 

-2mn 2mn 0 0  0 
2      2 

m -n 

where [C] is given in Eq. (69), m = cos6 and n = sin6. Equations (70) and (71) represent the stress- 
strain relations for a lamina in a local coordinate system after a rotation 0 about the z-axis. 

Next we consider a laminate of constant thickness h composed of AT-layers of thickness fy. 
(h = V" tk). Each lamina can have an arbitrary orientation (z-rotation) with respect to the local 
coordmate'system (xyz). The properties of this laminate can be effectively represented by an homoge- 
neous anisotropic solid. Consider the stress-strain relations for the homogeneous solid in the local 
system of the form: 

Iß] = 

{o},vz = [ß]{£> xyz 

ßll    ß.2 ß,3ß.6    0 0 

ß22 ß23ß26    0 0 

fi33 036    0 0 

sym. Ö66    0 0 

ß44 ß45 

(72) 
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where the effective elastic constants of the solid ß,7 are computed from the material matrices of the 
individual plies by the transformations (Ref. [19]): 

ßn=Ä 

Qn = l 

ßi3 = * 

JV JV 

X tkQ% + X (ßE - ^13)^(ßiV - ßnVß 33 

V,* = 1 k = 2 

£ '*o(>*2 + X (ßi? - IKMQE - Q(>Q% 
^*=1 * = 2 

JV JV 
id)     /i<*K //,(*) X /4ß

(,V + X (ß^ - **)«<&> - ß!?)/ßS' 
V* = 1 * = 2 

ß* = i 

ß23  = 

'  JV jv 
(*)  .   V ,nW ,0)     o<*K //■><*) 

X '*ßa + X (ß» " X23)^(Ö23 " ßäVßg 
* = 2 

ß,6-J 

X rf + X (ß» - ^'^ - ß» KßM 
V* = 1 * = 2 

'    /V JV 

X 'A+x(ß» - ^wß* - ß*)/ß* 

ß26  =   ^ 

ß36  = 

^* = 1 * = 2 

JV JV 
■»<!)   /^(*)\ //!<*) 

X '»ß«+ X(ö" - ^^ß* - ß*)/ß» 
^* = 1 * = 2 

JV JV 
^(i)    ^W\//iW 

X 'Ä + X (ß» - *«W " ß* )/ß» 
* = 2 

ß66  = 

(   JV JV ^ 

X »*ß«+ X (ß»" ^wß*" ß*>/ß3 
^<t = 1 * = 2 

ß33  = 

X'*/ö 
33 

k= 1 

ß44  = 

ß45  = 

ß55  = 

' Ä **<£>' /A 

r-i rJtwf45 

Z^ AA-. 
/A 

f N t o(k)^ 

2* AAt 
/A 

Ä-13  =  ßl3 ^23   -   ß: 23 

^33  =  ß33 ^36  -   ß36 

At = ßM-(ß^2 

A = 
f N t o(k)^ 

2w AA* 

jv    0(t) 

AAt 

/ \2 
N t ow 
^ W45 
2- AAt 

(73) 

Once the material matrix for the homogenized solid is computed in the local system (xyz), we need to 
determine the material matrix in the global system (XYZ) shown in Figure 51b, and then extract the 
material matrix associated with the 'plane-strain' plane (XY-plane). 
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In the global system, the three-dimensional stress-strain relations can be written in the following 
form: 

{°}XKZ =   [£3Z)He}xi'Z (74) 

where the global material matrix [£3D] of the homogenized solid is computed from the local matrix 
[Q] as follows: 

[E3D] = [T0f[Q][T0] 

The transformation matrix [r0] is given by: 

(75) 

[T0] = 

I] l\ I] V2 hh V. 
2 2 

ffl2 

2 m3 mxm2 m2m3 m3m 

2 
«1 

2 
n2 

In 
«3 nln2 n2n3 n3n (76) 

l 

2/j/n, 2/2m2 2/3m3 lxm2 + l2mx l2m3 + l3m2 l3ml + llm3 

2m,«, 2m2n2 2m3n3 mln2 + m2nx m2n3 + m3n2 m3nl + mln3 

2/ij/j   2n2/2   2n3/3    nll2 + n2ll     n2l3 + n3l2    n3li+nll3 

where /,-, mv nt are the direction cosines that relate a point in the global (XYZ) coordinate system to a 
point in the local (xyz) coordinate systems: 

• 
X "'. l2   l3 X 

y ■  = m. tn2 m3 ■   Y 

z ."' n2 n3_ [ Z J 
(77) 

Since the transformation indicated by Eq. (75) is very general, the 3D global material matrix can be 
fully populated. Therefore, the material matrix in Eq. (75) can be written as (using a single index 
notation for the 21 independent coefficients): 

[E3D] = 

E\    E2 *4 Ei E\\ E\(> 

E, £5 Eg El2 EX1 

E6 
E9  E13 E16 

sym. £10 EU E\9 

E\5 £20 

EZ\_ 

(78) 
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The 2D plane-strain material matrix is extracted for Eq. (78) by pulling out the rows and columns 
associated with the XT-plane of the global system: 

°x £|   £2 ^7 £x 
Oy = E3 £8 Ey 

}XY_ sym      £10_ lXY_ 

(79) 

The material matrix in Eq. (79) is used for the computation of the stiffness matrices for 2D-elasticity 
under plane-strain conditions, and the material matrix in Eq. (78) is used for the computation of the 
stiffness matrices for 3D-elasticity for those elements with laminate property assignments. 

4.9.2  Examples 

Two examples are presented to illustrate the implementation. In the first example each layer of the 
laminate is explicitly included in the model, while in the second example some plies are replaced by a 
single element with homogenized properties. A comparison between the two is performed to assess 
the influence of the homogenization in the results. 

Example 1: Consider a 16-ply [4(0/90)]5 simply supported laminated composite strip under plane 
strain conditions subjected to a sinusoidal traction as shown in Figure 52. Each ply is of the same 

q=cos(roc/a) 

Ux=0 
(symmetry) 

Ä=1.0 

Local System 

FIGURE 52. 16 ply [4(0/90)]s simply-supported laminated composite under sinusoidal load. Notation and mesh. 

material and thickness (*=0.0625 mm) with the following properties: 
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EL = 1.38xl05 MPa, ET = 9.3xl05 MPa 

GLT = 4.6x10s MPa, G^ 3.1xl05 MPa 

vLr=0.3, V7y=0.5 

Because of symmetry, only half of the beam was considered for the analysis. The mesh shown in Fig- 
ure 52 consists of 16 quadrilateral elements, one for each ply. The material properties for a each ply 
are entered in the material definition form shown in Figure 53a. All nine engineering coefficients 
(En, £22' ^33' ^12' ^23' ^31» V12> v23' V13) m me direction of the material axis and the ply thickness 
must be provided in this form. The three coefficients of thermal expansion (ajj, «22. «33) and the 
mass density are optional. After the material properties for a single ply are entered, the ply group 
information must be provided as shown in Figure 53b: The ply group name, the lamina material name 
and the ply layout angles. The stack form shown in Figure 53c is used to assemble the ply groups by 
providing the stack sequence name, the number of layers in the laminate, whether the stack is sym- 
metric or not and the stacking sequence based on the ply group names. As shown in Figure 53, the 

EBHtHiHWBBf                                        1 

1 
Math  | Section Prop] Thickness Material j Lor<l»l 

Define            HI Linear 

Define | Assign | 

Material ID   Type 

2J\ Selection ±l 

^B *l 
SINGLEPLY2    ,Laminate_Ortho 

d 

riD:      JSINGLEPLY 

"fit 

s 
0 

1. Stress 

r Scale:    |0.000e*000            Jjj.-T 

Option:    | Defined MM.    *| Unite:    |l 

Material  JLinear            jj FMnjj: ■' |is 

Type:     JLamin.Ortho    j-JCase:   |p 

Comment   | 

*\ Ell:      |l.3B0e*005      E22:      J9.300e+003 

E33:      |9.300e*003      v12:      |3.000e-O01 

zl 

v23:      |5.000e-001       v13:     ;]3.000e-O01 

G12:     |4600e*003      C 23:     J3.100e*003 

lens.:   |l.000e-004 G31:     |4.60ue»003      C 

all:      |0.uOue»000      e22:      |0.000e»000 

• 1 |   Accept Replace Delete Pur? 

Fitting Cancel * 

(a) Material definition 

Laminated Material Definition 

Ply      | Slack I 

PtyName Property Layout Angles 

PtyGraupName: PLY90 

Lamina Material Name:    JSINGLEPLY J 

PV layaut angles: (e.g. ft45H530) 

F 
Leave blank if ISOTROPIC 

Accept | Replace    Delate      Purge  | 

(b) Ply group definition 

Laminated Material Definition 

Ply       Stack 

Stack Name Layers     Sequence 

(c) Stacking definition 
Stack Sequence Name:     LAM90 

Number of Layers:   [l |Non-SymmetricH. 

Stacking sequence: (e.g. a:b*3;2'c) 

JpTyJiÖ 

(e.g. ab. care pry group names) 

Accept | Replace    Delete      Purge 

FIGURE 53.  Input forms for laminate properties definition. Example 1 

material property SINGLEPLY, defined in the material definition form, is used to define the ply group 
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PLY90 with a ply layout of 90 degrees with respect to the z-axis of a local system and the stack 
LAM90 is created with a single ply using the plygroup PLY90. The last step is to assign the material 
stacks to the elements and select the local coordinate system, the z-axis of which is assumed to be 
aligned with the material 3-axis. The material assignment form is shown in Figure 53. The orientation 
of the local coordinate system relative to the global system is used to determine the material matrix in 
the global system as explained in the previous section. 

feMilBllffll 
Mtth | SectionProp.|TMekne«» Material Ii_o<<l» 
|Select _»] |Any Element  jj| Selection       J 

(Mine  Astign | 
Object Material ID System All/Sal 

r S>.     ILAM90 

r Scale:   10.000 

Color... |jLayer90      rj 

System     JSYS2 

Type: 1 Laminate 13 

Aocept 

Fttfng 

Repleca 
Cancel 

Delete Purge 

Stack name 

Local system 

FIGURE 54. Input form for laminate properties assignment to elements. 

A sequence of finite element solutions was obtained for polynomial orders ranging from 1 to 8 for a 
length to thickness ratio (a/h) of 20. The estimated relative error in energy norm and the deformed 
configuration for run #8 are shown in Figure 55. The largest vertical deflection of the laminated strip 
occurs along the symmetry line (Uy = -0.24125). 

The distribution of the normal stress ax is shown in Figure 56 for run #8. The maximum value occurs 
at the lower surface along the symmetry line (ax

max = 394). These results will be compared with those 
of example 2. 
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Run U 

«0) 

Error Estimate 
16-ply lminate [4(0/90)]a 
Solution - SOL, runs #1 to #8 

DOT Total Potential Energy Convergence Rate % Error 

1 34 
2 100 
3 166 
4 2 64 
5 394 
6 556 
7 750 
8 976 

-3.677339739171e-001 
-2.726732225119e+000 
-3.004822685327e+000 
-3.011498754148e+000 
-3.011573787861e+000 
-3.011574291076e+000 
-3.011574292972e+000 
-3.011574293285e+000 

0.00 93.70 
1.03 30.75 
3.69 4.73 
4.84 0.50 
6.25 0.04 
7.83 0.00 
2.92 0.00 
2.92 0.00 

Estimated Limit -3.011574293369909e+000 

StressCheck VS.O.bll 

LINEAR ID • SOL 

Run - 6 , DOF-976 

Deformed 

Max - 1.8O65e-O02 

Min - -2.4125e-O01 

FIGURE 55. Estimated relative error in energy norm and deformed configuration for example 1. 

StressCheck VS.O.bl'S 

LINEAR ID - SOL 

Run - 6  ,  DOF-976 

Fnc.   ■ Sx 

Max -    3.9422e*O02 

Hin - -3.9422e*O02 

V-w.**t 

3.9422e+002 

3.1538e+002 

2.3653^1002 

1.5769e+002 

7.8844e-tO01 

-1.5259e-O05 

-7.8844frtO01 

-1.5769e*O02 

-2.3653*tO02 

-3.1538e*»2 

-3.9422frtO02 1 
FIGURE 56. Normal stress distribution (Sx) for example 1. 
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Example 2: Consider the same 16-ply [4(0/90)]5 simply supported laminated composite strip of 
example 1, but with the eight central layers replaced by a single element with equivalent properties. 
The finite element mesh is shown in Figure 57. The ply group definition and stacking sequence for the 

sub-laminate 

SB 
all 

mm 

FIGURE 57. Mesh for a 16 ply [4(0/90)]s simply-supported laminated composite under sinusoidal 
load with the eight central layers replaced by a single element. 

8 individual layers (4 above and 4 below the sub-laminate) are the same as shown in Figure 53 for 
example 1. The corresponding input records for the sub-laminate are shown in Figure 58. The central 
8-plies [2(0/90]s can be described in more than one way in the input field of Figure 58a. For example, 

Laminated Material Definition Laminated Material Definition 

Pty     I Stack 

Ply Nam« Property      Layout Angle» 

SUBLAM Ply Group Nam* 

Lamina Malarial Nama:    (LAMINA 

Ply layout angles: (a.g. 0:4S;-45;90) 

|2[0/90];2[90/0] 

Leave blank KISOTROPIC 

u 

Accapt [Replace |  Delete |   Purga 

Pry        Stack 

Stack Name Layar«     Sequence 

Stack Sequence Name:   jSUBLAMINA 

Number of Layert:   |8:|Non-Symmetric_^| 

Stacking taquenoe: (e.g. a:b*3;2*c)  

Isublam 

 (e.g. a. h. c are pry group names)  

Accept | Replace |  Delete |   Purge 

(a) Ply group definition (b) Stacking definition 

FIGURE 58. Input forms for sub-laminate properties definition. Example 2 

0/90/0/90/90/0/90/0, or 2 [0/90] ;2 [90/0] as shown. Alternatively, define only half of the sub-laminate 
(4-plies) in the ply definition form (that is, 2[0/90]) and then use the Symmetric option in the stacking 
sequence. 

A sequence of finite element solutions was obtained for polynomial orders ranging from 1 to 8 for a 
length to thickness ratio (a/h) of 20. The estimated relative error in energy norm and the deformed 
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configuration for run #8 are shown in Figure 59. Note that the values of the total potential energy for 
run #8 (-3.112472) and largest vertical deflection for run #8 (-2.4933) are very close to those of exam- 
ple 1 (-3.011574 and -2.4125, respectively). 

Run M 

Error Estimate 
16-ply lminate [4(0/90)]s 

(0) Solution - SOL, runs #1  to MB 

Dor Total Potential Enercry Convergence Rate % Error 

1 20 -3.754066833833e-001 0.00 93.78 
2 58 -2.812359168830e+000 1.04 31.05 
3 96 -3.105194949305e+000 3.69 4.84 
4 152 -3.112378997471e+000 4.75 0.55 
5 226 -3.112470791549e+000 6.07 0.05 
6 318 -3.112471534377e+000 7.59 0.00 
7 428 -3.112471538458e+000 6.07 0.00 
8 556 -3.112471538567e+000 6.07 0.00 

Estimated Limit -3.112471538571881e+000 

StressCheck V5.0.bl4 

LINEAR ID - SOL 

Run - S , DOF-556 

Deformed 

Hex - 1.8703e-002 

Min - -2.4933e-O01 

FIGURE 59. Estimated relative error in energy norm and deformed configuration for example 2. 

The normal stress distribution ox for run #8 is shown in Figure 60. Note again that the maximum 

StressCheck  V5.0.bl4 

LINEAR ID - SOL 

Run -  8  ,  DOF-556 

Fnc.  - Sx 
Max -    4.0814ttO02 

Min - -4.0814*1002 

4.0814(^002 

3.2651e*O02 

2.4488*tO02 

1.6325*1002 

8.1627e+O01 

-7.6294e-006 

-8.1627e*O01 

] 
-1.6325e<002 

FIGURE 60. Normal stress distribution (Sx) for example 2. 
-2.4488*K»2 

-3.2651nO02 

-4.0814*tO02 

stress occurs at the lower surface along the symmetry line (Gx
max = 408) and it is very close to the 

value obtained for example 1 (ax
max = 394). 
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The analysis was repeated for several length-to-thickness ratios (a/h) and the results are summarized 
in Table 2. As can be seen, the results are very close, demonstrating the good approximating charac- 

TABLE 2. Results for examples 1 and 2 

a/h Example 
Potential 
Energy ii min a max 

20 1 
2 

-3.01157 
-3.11247 

-0.2413 
-0.2493 

394 
408 

40 1 
2 

-92.6603 
-95.9683 

-3.7077 
-3.8401 

1569 
1626 

80 1 
2 

-2935.45 
-3041.95 

-58.714 
-60.845 

6267 
6495 

teristics of the homogenization procedure implemented for the sub-laminate. 

Both example problems were analyzed again, but this time in a fully three-dimensional setting using 
the extrusion option in Stress Check. Because the composite strip is a cross ply laminate, the results 
should be identical to those of plane-strain, provided that the normal displacements of the faces con- 
tained in the XY-plane are constrained. 

In both cases a sequence of finite element solutions was obtained for polynomial orders ranging form 
1 to 8. Figure 61 shows the estimated relative error in energy norm for both cases. Note that the poten- 
tial energy values are the same as for the plane-strain cases (see Figures 55 and 59), but the number of 
degrees of freedom (DOF) have increased substantially for the 3D-solution. 

GlobalError GlobalError 
16-ply Imlnate  [4(0/90)]a 16-ply laminate  [4(0/90)]a 

(0)   Solution - SOL,   runs #1 to me (0)   Solution ■ SOL,   runs #1 to 08 

Rue * DOF Total Potential Energy    Convergence Rate % Error Run » DOr Total Potential Energy    Convergence Rate % Error 

1 66 -3.677339739127e-001                        0.00 93.70 1 40 -3.754066833B41e-001                         0.00 93.78 
2 251 -2.726732224908e+OO0                      0.85 30.75 2 146 -2.812359168826e+000                         0.85 31.05 
3 434 -3.00482268S147e+000                       3.42 4.73 3 252 -3.105194949440e+O00                         3.41 4.84 
4 780 -3.011498767466e+O00                      3.83 0.50 4 451 -3.11237893B211e+OO0                       3.75 0.S5 
5 12B9 -3.011S73787270e+000                      S.ll 0.04 5 743 -3.112470791411e+O00                         4.96 0.05 
6 2009 -3.011S74290980e+000                       2.25 0.01 e 1155 -3.112471S34477e+000                       2.27 0.02 
7 2968 -3.011574293358e+000                       0.00 0.01 7 1714 -3.112471S38631e-fO00                      0.00 0.02 
6 4274 -3.011574292866e4O00                       0.01 0.01 8 2447 -3.112471S38565e+000                       0.00 0.02 

Estimated Limit -3.O11574230932173e+O00 Estimated Limit -3.112471446182672e+000 

(a) Example 1 (b) Example 2 

FIGURE 61. Estimated relative error in energy norm from the 3D analysis of examples 1 and 2. 
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Figure 62 shows the deformed configuration for run # 8 for both cases. Again the largest displacement 
is the same as in the case of plane-strain (compare with Figures 55 and 59). 

St-essCh«:*: V5.B.D.U 

LINEAR ID - SOL 

Run • • , 00f-42» 

Dcforwttd 

MM •    l.-H«5e-O02 

Min ■ -2.412Se-001 

Stre «C-«k   Vi.C.bK 

UHEAR ID • SOL 

Run - 1 , DOF-2447 

DtforMd 

M*W >   1.8n>Je-W2 

Min • -2.4«JJt-O01 

(b) Example 2 

FIGURE 62. Deformed configuration from 3D analysis of examples 1 and 2. 

Finally, Figure 63 shows the normal stress distribution cx for run #8 for both examples, which are 
identical to their plane-strain counterpart (compare with Figures 59 and 60). 

StressCnec-  V5.0.3» 

LINE» ID ■ SOL 

bin - • , DOF-4274 

Fnc. ■ Sx 

K«x -    3.9422x002 

Din > -3.9422x002 

3.9422x002 

3.1531x002 

2.3653x002 

1.5769x002 

7.1944x001 

-1.52594-005 

-7.1)44x001 

-1.5769x002 

-2.3653x002 

-3.153BXO02 

-3.9422x002 

| 

(a) Example 1 

(b) Example 2 

it-essCheck ^.C.BI- 

LINEAR ID - SOL 

Run ■ 1 . OOF-244? 

Fnc.  ■ Sx 

Hax •   4.0114x002 

Kin - -4.0814x002 

|     4.O814XO02 

1     I.2651XO02 

1     2.446BX002 

;,.! „ 1.6125*4002 

B.1G27MO01 

-7.62Me-O06 

-R.1627.wO01 

SI -1.6]25**O02 

-2.44S8fr*O02 

H    -].26Sle*O02 

^^^   -4.0M4.wO02 

FIGURE 63. Normal stress distribution (Sx) from the 3D analysis of examples 1 and 2. 
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4.10 Task 10: Delivery of Stress Check software 

One copy of Stress Check (Release 5.0) software executable on a Windows NT workstation and 
pertinent documentation will be delivered to Dr. Douglas J. Holzhauer, Mechanical Engineer, Air 
Force Rome Laboratory, RL/ERDS, Griffiss AFB, NY 13441-5700. Rome Laboratory shall have the 
same rights to Stress Check as a "paid-up" licensee. 

All technical capabilities described in this report were incorporated in Release 5.0 of Stress Check 
which is currently undergoing beta testing. The official release date is December 1st 1999, at which 
time the software will be delivered to the Air Force. 

5     Summary and conclusions  

The technological developments implemented during the Phase II project are an essential prereq- 
uisite to proper interpretation of experimental data in much the same way as the ability to compute 
stress intensity factors in linear elastic fracture mechanics is an essential prerequisite to proper inter- 
pretation of experimentally obtained crack propagation data. The new capabilities, coupled with refer- 
ence data obtained from simple experiments, will make it possible to evaluate design alternatives in 
the fields of electronic component design and composite materials technology. This capability, made 
available for professional use through the finite element analysis software (Stress Check), is expected 
to be of substantial interest to manufacturers of electronic components, aerospace companies, and 
their suppliers. 

A change in the research objectives was needed because during the course of our investigation an 
improved and more generally applicable methodology for failure analysis of composite materials was 
conceived. The new technological capability provides improved numerical simulation tools for the 
design and analysis of laminated composite materials. The essential differences are that whereas the 
original task description envisioned failure analysis of composite materials entirely by means of lin- 
ear models, utilizing the concept of generalized stress intensity factors, the new tasks advanced the 
development of computational support for failure criteria based on linear as well as nonlinear material 
properties. 

The modification to the original goals of the Phase II project addressed the requirements of a 
working group of a government-industry consortium, called the Composite Affordability Initiative 
(CAT). This group was charged with the responsibility of identifying state-of-the-art numerical simu- 
lation technology that could be used in the design and analysis of composite joints with particular ref- 
erence to the development of next generation fighter aircraft. The group conducted a detailed 
evaluation of the technology we have developed and concluded unanimously that Stress Check is the 
best available tool for analyzing and designing bonded composite joints. The evaluation also identi- 
fied development tasks that needed to be completed in order to make Stress Check fully useful for the 
purposes of composite joint analysis. The new technological capabilities implemented as described in 
tasks 7 to 9 satisfies those additional requirements. They provide the numerical simulation tools that 
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can be used in the design and analysis of laminated composite joints, making advanced technology 
available for design engineers and analyst in the aerospace industry. 
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